메뉴 건너뛰기




Volumn 20, Issue 2, 2016, Pages 581-589

Bed load sediment transport estimation in a clean pipe using multilayer perceptron with different training algorithms

Author keywords

bed load; limit of deposition multilayer perceptron; sediment transport; sewer

Indexed keywords

ALGORITHMS; BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; DEPOSITION; MULTILAYERS; PARTICLE SIZE; SEDIMENTATION; SEDIMENTS; SEWERS;

EID: 84958040240     PISSN: 12267988     EISSN: 19763808     Source Type: Journal    
DOI: 10.1007/s12205-015-0630-7     Document Type: Article
Times cited : (47)

References (50)
  • 1
    • 0003913650 scopus 로고
    • PhD Thesis,University of Newcastle Upon Tyne, UK
    • Ab Ghani, A. (1993). Sediment transport in sewers, PhD Thesis,University of Newcastle Upon Tyne, UK.
    • (1993) Sediment transport in sewers
    • Ab Ghani, A.1
  • 3
    • 84864661900 scopus 로고    scopus 로고
    • Rectangular storm sewer design under equal sediment mobility
    • Almedeij, J. (2012). “Rectangular storm sewer design under equal sediment mobility.” American Journal of Environmental Science, Vol. 8, No. 4, pp. 376–384.
    • (2012) American Journal of Environmental Science , vol.8 , Issue.4 , pp. 376-384
    • Almedeij, J.1
  • 4
    • 77951015972 scopus 로고    scopus 로고
    • Remarks on Camp criterion for self-cleansing storm sewer
    • Almedeij, J. and Almohsen, N. (2010). “Remarks on Camp criterion for self-cleansing storm sewer.” Journal of Irrigation and Drainage Engineering, Vol. 136, No. 2, pp. 145–148. DOI: 10.1061/(ASCE) IR.1943-4774.0000129.
    • (2010) Journal of Irrigation and Drainage Engineering , vol.136 , Issue.2 , pp. 145-148
    • Almedeij, J.1    Almohsen, N.2
  • 5
    • 33749443208 scopus 로고    scopus 로고
    • Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data
    • Alp, M. H. and Cigizoglu, K. (2007). “Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data.” Environmental Modeling and Software, Vol. 22, No. 1, pp. 2–13, DOI: 10.1016/j.envsoft.2005.09.009.
    • (2007) Environmental Modeling and Software , vol.22 , Issue.1 , pp. 2-13
    • Alp, M.H.1    Cigizoglu, K.2
  • 6
    • 84855985774 scopus 로고    scopus 로고
    • ANFIS–based approach for predicting sediment transport in clean sewer
    • Azamathulla, H. Md., Ab Ghani, A., and Fei, S. Y. (2012). “ANFIS–based approach for predicting sediment transport in clean sewer.” Journal of Applied Soft Computing, Vol. 12, No. 3, pp. 1227–1230, DOI: 10.1016/j.asoc.2011.12.003.
    • (2012) Journal of Applied Soft Computing , vol.12 , Issue.3 , pp. 1227-1230
    • Azamathulla, H.M.1    Ab Ghani, A.2    Fei, S.Y.3
  • 7
    • 79958726909 scopus 로고    scopus 로고
    • Prediction of scour below submerged pipeline crossing a river using ANN
    • Azamathulla, H. Md., and Zakaria, N. A. (2011). “Prediction of scour below submerged pipeline crossing a river using ANN.” Water Science and Technology, Vol. 63, No. 10, pp. 2225–2230, DOI: 10.2166/wst.2011.459.
    • (2011) Water Science and Technology , vol.63 , Issue.10 , pp. 2225-2230
    • Azamathulla, H.M.1    Zakaria, N.A.2
  • 8
    • 84872049145 scopus 로고    scopus 로고
    • Closedform solution for flow field in curved channels in comparison with experimental and numerical analyses and Artificial Neural Network
    • Baghalian, S., Bonakdari, H., Nazari, F., and Fazli, M. (2012). “Closedform solution for flow field in curved channels in comparison with experimental and numerical analyses and Artificial Neural Network.” Engineering Application of Computational Fluid Mechanics, Vol. 6, No. 4, pp. 514–526.
    • (2012) Engineering Application of Computational Fluid Mechanics , vol.6 , Issue.4 , pp. 514-526
    • Baghalian, S.1    Bonakdari, H.2    Nazari, F.3    Fazli, M.4
  • 9
    • 47349101623 scopus 로고    scopus 로고
    • Hydraulic performance of sewer pipes with deposited sediments
    • Banasiak, R. (2008). “Hydraulic performance of sewer pipes with deposited sediments.” Water Science and Technology, Vol. 57, No. 11, pp. 1743–1748, DOI: 10.2166/wst.2008.287.
    • (2008) Water Science and Technology , vol.57 , Issue.11 , pp. 1743-1748
    • Banasiak, R.1
  • 10
    • 80052326951 scopus 로고    scopus 로고
    • Numerical analysis and prediction of the velocity field in curved open channel using Artificial Neural Network and Genetic Algorithm
    • Bonakdari, H., Baghalian, S., Nazari, F., and Fazli, M. (2011). “Numerical analysis and prediction of the velocity field in curved open channel using Artificial Neural Network and Genetic Algorithm.” Engineering Application of Computational Fluid Mechanics, Vol. 5, No. 3, pp. 384–396.
    • (2011) Engineering Application of Computational Fluid Mechanics , vol.5 , Issue.3 , pp. 384-396
    • Bonakdari, H.1    Baghalian, S.2    Nazari, F.3    Fazli, M.4
  • 13
    • 84874055602 scopus 로고    scopus 로고
    • Verification of equations for incipient motion studies for a rigid rectangular channel
    • Bong, C. H. J., Lau, T. L., and Ab Ghani, A. (2013). “Verification of equations for incipient motion studies for a rigid rectangular channel.” Water Science and Technology, Vol. 67, No. 2, pp. 395–403, DOI: 10.2166/wst.2012.580.
    • (2013) Water Science and Technology , vol.67 , Issue.2 , pp. 395-403
    • Bong, C.H.J.1    Lau, T.L.2    Ab Ghani, A.3
  • 15
    • 0037388929 scopus 로고    scopus 로고
    • Self-cleansing sewer design based on sediment transport principles
    • Butler, D., May, R. W. P., and Ackers, J. (2003). “Self-cleansing sewer design based on sediment transport principles.” Journal of Hydraulic Engineering, Vol. 129, No. 4, pp. 276–282, DOI: 10.1061/(ASCE) 0733-9429(2003)129:4(276).
    • (2003) Journal of Hydraulic Engineering , vol.129 , Issue.4 , pp. 276-282
    • Butler, D.1    May, R.W.P.2    Ackers, J.3
  • 16
    • 84882314134 scopus 로고    scopus 로고
    • Evaluation of sediment transport in sewer using artificial Neural Network
    • Ebtehaj, I. and Bonakdari, H. (2013). “Evaluation of sediment transport in sewer using artificial Neural Network.” Engineering Applications of Computational Fluid Mechanics, Vol. 7, No. 3, pp. 382–392.
    • (2013) Engineering Applications of Computational Fluid Mechanics , vol.7 , Issue.3 , pp. 382-392
    • Ebtehaj, I.1    Bonakdari, H.2
  • 17
    • 85027942599 scopus 로고    scopus 로고
    • Performance evaluation of adaptive neural fuzzy inference system for sediment transport in Sewers
    • Ebtehaj, I. and Bonakdari, H. (2014). “Performance evaluation of adaptive neural fuzzy inference system for sediment transport in Sewers.” Water Resource Management, Vol. 28, No. 13, pp. 4765:4779, DOI: 10.1007/s11269-014-0774-0.
    • (2014) Water Resource Management , vol.28 , Issue.13 , pp. 4765
    • Ebtehaj, I.1    Bonakdari, H.2
  • 18
    • 84919918148 scopus 로고    scopus 로고
    • Design criteria for sediment transport in sewers based on self-cleansing concept
    • Ebtehaj, I, Bonakdari, H., and Sharifi, A. (2014). “Design criteria for sediment transport in sewers based on self-cleansing concept.” Journal of Zhejiang University Science-A, Vol. 15, No. 11, pp. 914–924, DOI: 10.1631/jzus.A1300135.
    • (2014) Journal of Zhejiang University Science-A , vol.15 , Issue.11 , pp. 914-924
    • Ebtehaj, I.1    Bonakdari, H.2    Sharifi, A.3
  • 19
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of flow data by artificial neural networks
    • Cigizoglu, H. K. (2003). “Estimation, forecasting and extrapolation of flow data by artificial neural networks.” Hydrological Sciences Journal, Vol. 48, No. 3, pp. 349–361, DOI: 10.1623/hysj.48.3.349.45288.
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 20
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • Dawson, W. C. and Wilby, R. (1998). “An artificial neural network approach to rainfall-runoff modelling.” Hydrological Sciences Journal, Vol. 43, No. 1, pp. 47–66, DOI: 10.1080/02626669809492102.
    • (1998) Hydrological Sciences Journal , vol.43 , Issue.1 , pp. 47-66
    • Dawson, W.C.1    Wilby, R.2
  • 21
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornik, K., Stinchcombe, M., and White, H. (1989). “Multilayer feed forward networks are universal approximators.” Neural Networks, Vol. 2, No. 5, pp. 359–366, DOI: 10.1016/0893-6080(89)90020-8.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 22
    • 46449089657 scopus 로고    scopus 로고
    • Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation
    • Jain, S. K., Nayak, P. C., and Sudheer, K. P. (2008). “Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation.” Hydrological Processes, Vol. 22, No. 13, pp. 2225–2234, DOI: 10.1002/hyp.6819.
    • (2008) Hydrological Processes , vol.22 , Issue.13 , pp. 2225-2234
    • Jain, S.K.1    Nayak, P.C.2    Sudheer, K.P.3
  • 23
    • 42449161613 scopus 로고    scopus 로고
    • Prediction of municipal solid waste generation by use of artificial neural network: A case study of Mashhad
    • Jalili-Ghazi Zade, M. and Noori, R. (2008). “Prediction of municipal solid waste generation by use of artificial neural network: A case study of Mashhad.” International Journal of Environmental Research, Vol. 2, No. 1, pp. 13–22.
    • (2008) International Journal of Environmental Research , vol.2 , Issue.1 , pp. 13-22
    • Jalili-Ghazi Zade, M.1    Noori, R.2
  • 24
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kisi, O. (2007). “Streamflow forecasting using different artificial neural network algorithms.” Journal of Hydrologic Engineering, Vol. 12, No. 5, pp. 532–539, DOI: 10.1061/(ASCE)1084-0699(2007)12:5(532).
    • (2007) Journal of Hydrologic Engineering , vol.12 , Issue.5 , pp. 532-539
    • Kisi, O.1
  • 27
    • 0030037787 scopus 로고    scopus 로고
    • Development of design methodology for self-cleansing sewers
    • May, R. W. P., Ackers, J. C., Butler, D., and Johnt, S. (1996). “Development of design methodology for self-cleansing sewers.” Water Science and Technology, Vol. 33, No. 9, pp. 195–205, DOI: 10.1016/0273- 1223(96)00387-3.
    • (1996) Water Science and Technology , vol.33 , Issue.9 , pp. 195-205
    • May, R.W.P.1    Ackers, J.C.2    Butler, D.3    Johnt, S.4
  • 29
    • 0025748447 scopus 로고
    • Sediment transport in rigid bed conveyance
    • Mayerle, R., Nalluri, C., and Novak, P. (1991). “Sediment transport in rigid bed conveyance.” Journal of Hydraulic Research, Vol. 29, No. 4, pp. 475–495, DOI: 10.1061/(ASCE)1084-0699(2007)12:5(532).
    • (1991) Journal of Hydraulic Research , vol.29 , Issue.4 , pp. 475-495
    • Mayerle, R.1    Nalluri, C.2    Novak, P.3
  • 30
    • 79951680934 scopus 로고    scopus 로고
    • Suspended sediment load prediction of river systems: An artificial neural network approach
    • Melesse, A. M., Ahmad, S., McClain, M. E., and Lim, Y. H. (2011). “Suspended sediment load prediction of river systems: An artificial neural network approach.” Agricultural Water Management, Vol. 98, No. 5, pp. 855–866, DOI: 10.1016/j.agwat.2010.12.012.
    • (2011) Agricultural Water Management , vol.98 , Issue.5 , pp. 855-866
    • Melesse, A.M.1    Ahmad, S.2    McClain, M.E.3    Lim, Y.H.4
  • 31
    • 0001362410 scopus 로고
    • The Levenberg—Marquardt algorithm: Implementation and theory, Numerical Analysis
    • Watson G.A., (ed), Springer, New York
    • More, J. J. (1977). The Levenberg—Marquardt algorithm: Implementation and theory, Numerical Analysis. In: Watson GA (ed) Lecture notes in mathematics 630, Springer, New York, pp. 105–116.
    • (1977) Lecture notes in mathematics 630 , pp. 105-116
    • More, J.J.1
  • 32
    • 0036611003 scopus 로고    scopus 로고
    • Prediction of sedimentload concentration in rivers using artificial Neural Network Model
    • Nagy, H., Watanabe, K., Hirano, M. (2002). “Prediction of sedimentload concentration in rivers using artificial Neural Network Model.” Journal of. Hydraulic Engineering, Vol. 128, No. 6, pp. 588–595, DOI: 10.1061/(ASCE)0733-9429(2002)128:6(588).
    • (2002) Journal of. Hydraulic Engineering , vol.128 , Issue.6 , pp. 588-595
    • Nagy, H.1    Watanabe, K.2    Hirano, M.3
  • 34
    • 0028175783 scopus 로고
    • Sediment transport over deposited beds in sewers
    • Nalluri, C., Ab Ghani, A., and El-Zaemey, A. K. S. (1994). “Sediment transport over deposited beds in sewers.” Water Science and Technology, Vol. 29, Nos. 1–2, pp. 125–133.
    • (1994) Water Science and Technology , vol.29 , Issue.1-2 , pp. 125-133
    • Nalluri, C.1    Ab Ghani, A.2    El-Zaemey, A.K.S.3
  • 35
    • 0027007127 scopus 로고
    • Extended data on sediment transport in rigid bed rectangular channel
    • Nalluri, C. and Kithsiri, M. M. A. U. (1992). “Extended data on sediment transport in rigid bed rectangular channel.” Journal of Hydraulic Research, Vol. 30, No. 6, pp. 851–856. DOI: 10.1080/ 00221689209498914.
    • (1992) Journal of Hydraulic Research , vol.30 , Issue.6 , pp. 851-856
    • Nalluri, C.1    Kithsiri, M.M.A.U.2
  • 36
    • 0016556823 scopus 로고
    • Sediment transport in smooth fixed bed channels
    • Novak, P. and Nalluri, C. (1975). “Sediment transport in smooth fixed bed channels.” Journal of Hydraulic Division, ASCE, Vol. 101, pp. 1139–1154.
    • (1975) Journal of Hydraulic Division, ASCE , vol.101 , pp. 1139-1154
    • Novak, P.1    Nalluri, C.2
  • 37
    • 73749085391 scopus 로고    scopus 로고
    • Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration
    • Noori, R., Hoshyaripour, G., Ashrafi, K., and Nadjar-Araabi, B. (2010). “Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration.” Atmospheric Environment, Vol. 44, No. 4, pp. 476–482. DOI: 10.1016/j.atmosenv. 2009.11.005.
    • (2010) Atmospheric Environment , vol.44 , Issue.4 , pp. 476-482
    • Noori, R.1    Hoshyaripour, G.2    Ashrafi, K.3    Nadjar-Araabi, B.4
  • 38
    • 33745604026 scopus 로고    scopus 로고
    • Neural networks modelling of streamflow, phosphorus, and suspended solids: Application to the Canadian Boreal forest
    • Nour, M. H., Smith, D. W. and Prepas, E. E. (2006). “Neural networks modelling of streamflow, phosphorus, and suspended solids: Application to the Canadian Boreal forest.” Water Science and Technology, Vol. 53, No. 10, pp. 91–99.
    • (2006) Water Science and Technology , vol.53 , Issue.10 , pp. 91-99
    • Nour, M.H.1    Smith, D.W.2    Prepas, E.E.3
  • 39
    • 79955427430 scopus 로고    scopus 로고
    • Optimisation of reactive dye removal by sequential electrocoagulation–flocculation method: Comparing ANN and RSM prediction
    • Nourouzi, M. M., Chuah, T. G., and Choong, T. S. Y. (2011). “Optimisation of reactive dye removal by sequential electrocoagulation–flocculation method: Comparing ANN and RSM prediction.” Water Science and Technology, Vol. 63, No. 5, pp. 985–995. DOI: 10.2166/wst.2011.280.
    • (2011) Water Science and Technology , vol.63 , Issue.5 , pp. 985-995
    • Nourouzi, M.M.1    Chuah, T.G.2    Choong, T.S.Y.3
  • 40
    • 0037387466 scopus 로고    scopus 로고
    • Urban storm sewer design: Approach in consideration of sediments
    • Ota, J. J. and Nalluri, C. (2003). “Urban storm sewer design: Approach in consideration of sediments.” Journal of Hydraulic Engineering, Vol. 129, No. 4, pp. 291–297, DOI: 10.1061/(ASCE)0733-9429(2003) 129:4(291).
    • (2003) Journal of Hydraulic Engineering , vol.129 , Issue.4 , pp. 291-297
    • Ota, J.J.1    Nalluri, C.2
  • 41
    • 84875242637 scopus 로고    scopus 로고
    • Particle velocity and sediment transport at the limit of deposition in sewers
    • Ota J. J. and Perrusquia, G. S. (2013). “Particle velocity and sediment transport at the limit of deposition in sewers.” Water Science and Technology, Vol. 67, No. 5, pp. 959–967, DOI: 10.2166/wst.2013.646.
    • (2013) Water Science and Technology , vol.67 , Issue.5 , pp. 959-967
    • Ota, J.J.1    Perrusquia, G.S.2
  • 42
    • 65249094814 scopus 로고    scopus 로고
    • River flow forecasting using different artificial neural network algorithms and wavelet transform
    • Partal, T. (2009). “River flow forecasting using different artificial neural network algorithms and wavelet transform.” Canadian Journal of Civil Engineering, Vol. 36, No. 1, pp. 26–38. DOI: 10.1139/L08-090.
    • (2009) Canadian Journal of Civil Engineering , vol.36 , Issue.1 , pp. 26-38
    • Partal, T.1
  • 43
    • 77955735474 scopus 로고    scopus 로고
    • Daily outflow prediction by multilayer perceptron with logistic sigmoid and tangent sigmoid activation functions
    • Rezaeian Zadeh, M., Amin, S., Khalili, D., and Singh, V. P. (2010). “Daily outflow prediction by multilayer perceptron with logistic sigmoid and tangent sigmoid activation functions.” Water Resource Management, Vol. 24, No. 11, pp. 2673–2688, DOI: 10.1007/ s11269-009-9573-4.
    • (2010) Water Resource Management , vol.24 , Issue.11 , pp. 2673-2688
    • Rezaeian Zadeh, M.1    Amin, S.2    Khalili, D.3    Singh, V.P.4
  • 45
    • 28844436447 scopus 로고    scopus 로고
    • Comparison of Artificial Neural Network and regression models for sediment loss prediction from Banha watershed in India
    • Sarangi, A. and Bhattacharya, A. K. (2005). “Comparison of Artificial Neural Network and regression models for sediment loss prediction from Banha watershed in India.” Agricultural Water Management, Vol. 78, pp. 195–208, DOI: 10.1016/j.agwat.2005.02.001.
    • (2005) Agricultural Water Management , vol.78 , pp. 195-208
    • Sarangi, A.1    Bhattacharya, A.K.2
  • 46
    • 31344477101 scopus 로고    scopus 로고
    • Applications of artificial neural networks in integrated water management: fiction or future?
    • Schulz, F. H., Wolf, H., Jansen, H. W., and Van der Veer, P. (2005). “Applications of artificial neural networks in integrated water management: fiction or future?.” Water Science and Technology, Vol. 52, No. 9, pp. 21–31.
    • (2005) Water Science and Technology , vol.52 , Issue.9 , pp. 21-31
    • Schulz, F.H.1    Wolf, H.2    Jansen, H.W.3    Van der Veer, P.4
  • 48
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behavior of artificial neural network river flow models
    • Sudheer, K. P., and Jain, A. (2004). “Explaining the internal behavior of artificial neural network river flow models.” Hydrological Processes, Vol. 18, No. 4, pp. 833–844, DOI: 10.1002/hyp.5517.
    • (2004) Hydrological Processes , vol.18 , Issue.4 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 49
    • 77249104673 scopus 로고    scopus 로고
    • Nondeposition design criteria for sewers with part-full flow
    • Vongvisessomjai, N., Tingsanchali, T., and Babel, M. S. (2010). “Nondeposition design criteria for sewers with part-full flow.” Urban Water Journal, Vol. 7, No. 1, pp. 61–77, DOI: 10.1080/15730620903242824.
    • (2010) Urban Water Journal , vol.7 , Issue.1 , pp. 61-77
    • Vongvisessomjai, N.1    Tingsanchali, T.2    Babel, M.S.3
  • 50
    • 77953342831 scopus 로고    scopus 로고
    • Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting
    • Yonaba, H., Anctil, F., and Fortin, V. (2010). “Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting.” Journal of Hydrologic Engineering, ASCE, Vol. 15, No. 4, pp. 275–283, DOI: 10.1061/(ASCE)HE.1943-5584.0000188.
    • (2010) Journal of Hydrologic Engineering, ASCE , vol.15 , Issue.4 , pp. 275-283
    • Yonaba, H.1    Anctil, F.2    Fortin, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.