메뉴 건너뛰기




Volumn 42, Issue 1, 2015, Pages 49-74

Detecting multiple stochastic network motifs in network data

Author keywords

Expectation maximization algorithms; Finite mixture models; Social networks; Stochastic network motifs

Indexed keywords

COMPLEX NETWORKS; COMPUTATIONAL EFFICIENCY; IMAGE SEGMENTATION; MAXIMUM PRINCIPLE; MIXTURES; PETROLEUM RESERVOIR EVALUATION; SIGNAL DETECTION; SOCIAL NETWORKING (ONLINE); STOCHASTIC SYSTEMS;

EID: 84957964666     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-013-0680-4     Document Type: Article
Times cited : (9)

References (50)
  • 1
    • 0038718854 scopus 로고    scopus 로고
    • The structure and function of complex networks
    • Newman M (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256
    • (2003) SIAM Rev , vol.45 , Issue.2 , pp. 167-256
    • Newman, M.1
  • 2
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabási A, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512
    • (1999) Science , vol.286 , Issue.5439 , pp. 509-512
    • Barabási, A.1    Albert, R.2
  • 3
    • 84893721621 scopus 로고    scopus 로고
    • Hubs, authorities, and communities
    • Kleinberg J (1999) Hubs, authorities, and communities. ACM Comput Surv 31(4):5–7
    • (1999) ACM Comput Surv , vol.31 , Issue.4 , pp. 5-7
    • Kleinberg, J.1
  • 4
    • 77954653623 scopus 로고    scopus 로고
    • Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th international conference on World Wide Web
    • Leskovec J, Lang K, Mahoney M (2010) Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th international conference on World Wide Web, pp 631–640
    • (2010) pp 631–640
    • Leskovec, J.1    Lang, K.2    Mahoney, M.3
  • 6
    • 84865608788 scopus 로고    scopus 로고
    • Simultaneous classification and community detection on heterogeneous network data
    • Comar P, Tan PN, Jain AK (2012) Simultaneous classification and community detection on heterogeneous network data. Data Min Knowl Discov 25(3):420–449
    • (2012) Data Min Knowl Discov , vol.25 , Issue.3 , pp. 420-449
    • Comar, P.1    Tan, P.N.2    Jain, A.K.3
  • 7
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of Escherichia coli
    • Shen-Orr S, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet 31(1):64–68
    • (2002) Nature Genet , vol.31 , Issue.1 , pp. 64-68
    • Shen-Orr, S.1    Milo, R.2    Mangan, S.3    Alon, U.4
  • 10
    • 4444268694 scopus 로고    scopus 로고
    • Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs
    • Kashtan N, Itzkovitz S, Milo R, Alon U (2004) Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11):1746–1758
    • (2004) Bioinformatics , vol.20 , Issue.11 , pp. 1746-1758
    • Kashtan, N.1    Itzkovitz, S.2    Milo, R.3    Alon, U.4
  • 11
    • 33845676319 scopus 로고    scopus 로고
    • Efficient detection of network motifs
    • Wernicke S (2006) Efficient detection of network motifs. IEEE/ACM Trans Comput Biol Bioinform 3(4):347–359
    • (2006) IEEE/ACM Trans Comput Biol Bioinform , vol.3 , Issue.4 , pp. 347-359
    • Wernicke, S.1
  • 12
    • 6944240088 scopus 로고    scopus 로고
    • Local graph alignment and motif search in biological networks
    • Berg J, Michael L (2004) Local graph alignment and motif search in biological networks. Proc Natl Acad Sci 101(41):14689–14694
    • (2004) Proc Natl Acad Sci , vol.101 , Issue.41 , pp. 14689-14694
    • Berg, J.1    Michael, L.2
  • 13
    • 33745433838 scopus 로고    scopus 로고
    • Network motif identification in stochastic networks
    • Jiang R, Tu Z, Chen T, Sun F (2006) Network motif identification in stochastic networks. Proc Natl Acad Sci 103(25):9404–9409
    • (2006) Proc Natl Acad Sci , vol.103 , Issue.25 , pp. 9404-9409
    • Jiang, R.1    Tu, Z.2    Chen, T.3    Sun, F.4
  • 14
    • 78651292681 scopus 로고    scopus 로고
    • Communication motifs: A tool to characterize social communications. In: Proccedings of the 19th ACM international conference on information and, knowledge management
    • Zhao Q, Tian Y, He Q, Oliver N, Jin R, Lee W (2010) Communication motifs: A tool to characterize social communications. In: Proccedings of the 19th ACM international conference on information and, knowledge management, pp 1645–1648
    • (2010) pp 1645–1648
    • Zhao, Q.1    Tian, Y.2    He, Q.3    Oliver, N.4    Jin, R.5    Lee, W.6
  • 16
    • 57749192429 scopus 로고    scopus 로고
    • Local topology of social network based on motif analysis. In: Proceedings of knowledge-based intelligent information and engineering systems
    • Juszczyszyn K, Kazienko P, Musial K (2008) Local topology of social network based on motif analysis. In: Proceedings of knowledge-based intelligent information and engineering systems, pp 97–105
    • (2008) pp 97–105
    • Juszczyszyn, K.1    Kazienko, P.2    Musial, K.3
  • 17
    • 70449134039 scopus 로고    scopus 로고
    • Motif-based analysis of social position influence on interconnection patterns in complex social network. In: Procceedings of the 1st Asian conference on intelligent information and database systems
    • Musial K, Juszczyszyn K (2009) Motif-based analysis of social position influence on interconnection patterns in complex social network. In: Procceedings of the 1st Asian conference on intelligent information and database systems, pp 34–39
    • (2009) pp 34–39
    • Musial, K.1    Juszczyszyn, K.2
  • 18
    • 69449091040 scopus 로고    scopus 로고
    • Time-dependent complex networks: dynamic centrality, dynamic motifs, and cycles of social interactions
    • Braha D, Bar-Yam Y (2009) Time-dependent complex networks: dynamic centrality, dynamic motifs, and cycles of social interactions. Theory, models and applications, adaptive networks, pp 39–50
    • (2009) Theory, models and applications, adaptive networks , pp. 39-50
    • Braha, D.1    Bar-Yam, Y.2
  • 19
    • 77954012379 scopus 로고    scopus 로고
    • Signed networks in social media. In: Proceedings of the 28th international conference on human factors in computing systems
    • Leskovec J, Huttenlocher D, Kleinberg J (2010) Signed networks in social media. In: Proceedings of the 28th international conference on human factors in computing systems, pp 1361–1370
    • (2010) pp 1361–1370
    • Leskovec, J.1    Huttenlocher, D.2    Kleinberg, J.3
  • 20
    • 27244456660 scopus 로고    scopus 로고
    • Finding local community structure in networks
    • Clauset A (2005) Finding local community structure in networks. Phys Rev E 72(2):132–137
    • (2005) Phys Rev E , vol.72 , Issue.2 , pp. 132-137
    • Clauset, A.1
  • 21
    • 34548710243 scopus 로고    scopus 로고
    • Very local structure in social networks
    • Faust K (2007) Very local structure in social networks. Sociol Method 37(1):209–256
    • (2007) Sociol Method , vol.37 , Issue.1 , pp. 209-256
    • Faust, K.1
  • 22
    • 65449153304 scopus 로고    scopus 로고
    • The structure of information pathways in a social communication network. In: Proceeding of the 14th ACM SIGKDD international conference on knowledge discovery and data mining
    • Kossinets G, Kleinberg J, Watts D (2008) The structure of information pathways in a social communication network. In: Proceeding of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, pp 435–443
    • (2008) pp 435–443
    • Kossinets, G.1    Kleinberg, J.2    Watts, D.3
  • 23
    • 84868551664 scopus 로고    scopus 로고
    • Detecting local network motifs
    • Birmele E (2012) Detecting local network motifs. Electron J Stat 6(1):908–933
    • (2012) Electron J Stat , vol.6 , Issue.1 , pp. 908-933
    • Birmele, E.1
  • 25
    • 77951575957 scopus 로고    scopus 로고
    • Using network motifs to identify application protocols. In: Global telecommunications conference
    • Allan E, Turkett W, Fulp E (2009) Using network motifs to identify application protocols. In: Global telecommunications conference, pp 1–7
    • (2009) pp 1–7
    • Allan, E.1    Turkett, W.2    Fulp, E.3
  • 26
    • 84890722990 scopus 로고    scopus 로고
    • Network analysis of recurring YouTube spam campaigns. In: Proceedings of the 6th international AAAI conference on weblogs and social media
    • Callaghan D, Harrigan M, Carthy J, Cunningham P (2012) Network analysis of recurring YouTube spam campaigns. In: Proceedings of the 6th international AAAI conference on weblogs and social media, pp 531–534
    • (2012) pp 531–534
    • Callaghan, D.1    Harrigan, M.2    Carthy, J.3    Cunningham, P.4
  • 27
    • 84863154816 scopus 로고    scopus 로고
    • Stochastic network motif detection in social media. In: Proccedings of ICDM workshop on data mining in networks
    • Liu K, Cheung WK, Liu J (2011) Stochastic network motif detection in social media. In: Proccedings of ICDM workshop on data mining in networks, pp 949–956
    • (2011) pp 949–956
    • Liu, K.1    Cheung, W.K.2    Liu, J.3
  • 28
    • 84861431949 scopus 로고    scopus 로고
    • Detecting multiple stochastic network motifs in network data. In: Proceedings of the 16th Pacific–Asia conference on knowledge discovery and data mining
    • Liu K, Cheung W K, Liu J (2012) Detecting multiple stochastic network motifs in network data. In: Proceedings of the 16th Pacific–Asia conference on knowledge discovery and data mining, pp 205–217
    • (2012) pp 205–217
    • Liu, K.1    Cheung, W.K.2    Liu, J.3
  • 30
    • 84871291468 scopus 로고    scopus 로고
    • New trends in graph mining: structural and node-colored network motifs
    • Bruno F, Palopoli L, Rombo S (2010) New trends in graph mining: structural and node-colored network motifs. Int J Knowl Discov Bioinform 1(1):81–99
    • (2010) Int J Knowl Discov Bioinform , vol.1 , Issue.1 , pp. 81-99
    • Bruno, F.1    Palopoli, L.2    Rombo, S.3
  • 31
    • 84863253706 scopus 로고    scopus 로고
    • Biological network motif detection: principles and practice
    • Wong E, Baur B, Quader S, Huang C (2012) Biological network motif detection: principles and practice. Briefings Bioinform 12(2):202–215
    • (2012) Briefings Bioinform , vol.12 , Issue.2 , pp. 202-215
    • Wong, E.1    Baur, B.2    Quader, S.3    Huang, C.4
  • 33
    • 24144495559 scopus 로고    scopus 로고
    • MAVisto: a tool for the exploration of network motifs
    • Schreiber F, Schwöbbermeyer H (2005) MAVisto: a tool for the exploration of network motifs. Bioinformatics 21(17):3572–3574
    • (2005) Bioinformatics , vol.21 , Issue.17 , pp. 3572-3574
    • Schreiber, F.1    Schwöbbermeyer, H.2
  • 34
    • 33749543885 scopus 로고    scopus 로고
    • Nemofinder: dissecting genome-wide protein–protein interactions with meso-scale network motifs. In: Proccedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining
    • Chen J, Hsu W, Lee M, Ng S (2006) Nemofinder: dissecting genome-wide protein–protein interactions with meso-scale network motifs. In: Proccedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 106–115
    • (2006) pp 106–115
    • Chen, J.1    Hsu, W.2    Lee, M.3    Ng, S.4
  • 35
    • 70449631149 scopus 로고    scopus 로고
    • Kavosh: a new algorithm for finding network motifs
    • Kashani Z, Ahrabian H, Elahi E et al (2009) Kavosh: a new algorithm for finding network motifs. BMC Bioinform 10(1):318–329
    • (2009) BMC Bioinform , vol.10 , Issue.1 , pp. 318-329
    • Kashani, Z.1    Ahrabian, H.2    Elahi, E.3
  • 36
    • 34547469442 scopus 로고    scopus 로고
    • Network motif discovery using subgraph enumeration and symmetry-breaking
    • Grochow J, Kellis M (2007) Network motif discovery using subgraph enumeration and symmetry-breaking. Research in computational, molecular biology, pp 92–106
    • (2007) Research in computational, molecular biology , pp. 92-106
    • Grochow, J.1    Kellis, M.2
  • 37
    • 76749118079 scopus 로고    scopus 로고
    • Moda: an efficient algorithm for network motif discovery in biological networks
    • Omidi S, Schreiber F, Masoudi-Nejad A (2009) Moda: an efficient algorithm for network motif discovery in biological networks. Genes Genet Syst 84(5):385–395
    • (2009) Genes Genet Syst , vol.84 , Issue.5 , pp. 385-395
    • Omidi, S.1    Schreiber, F.2    Masoudi-Nejad, A.3
  • 38
    • 0008690083 scopus 로고    scopus 로고
    • The graph isomorphism problem. Technical Report 96–20, University of Alberta
    • Alberta, Canada
    • Fortin S (1996) The graph isomorphism problem. Technical Report 96–20, University of Alberta, Edomonton, Alberta, Canada
    • (1996) Edomonton
    • Fortin, S.1
  • 39
    • 84920710279 scopus 로고    scopus 로고
    • Nauty user’s guide (version 2.4). Computer Science Dept
    • McKay B (2007) Nauty user’s guide (version 2.4). Computer Science Dept, Australian National University
    • (2007) Australian National University
    • McKay, B.1
  • 40
    • 11144248635 scopus 로고    scopus 로고
    • The topological relationship between the large-scale attributes and local interaction patterns of complex networks
    • Vazquez A, Dobrin R, Sergi D, Eckmann J, Oltvai Z, Barabási A (2004) The topological relationship between the large-scale attributes and local interaction patterns of complex networks. Proc Natl Acad Sci 101(52):17940–17945
    • (2004) Proc Natl Acad Sci , vol.101 , Issue.52 , pp. 17940-17945
    • Vazquez, A.1    Dobrin, R.2    Sergi, D.3    Eckmann, J.4    Oltvai, Z.5    Barabási, A.6
  • 41
    • 79951515353 scopus 로고    scopus 로고
    • Counting triangles in real-world networks using projections
    • Tsourakakis CE (2011) Counting triangles in real-world networks using projections. Knowl Inf Syst 26(3):501–520
    • (2011) Knowl Inf Syst , vol.26 , Issue.3 , pp. 501-520
    • Tsourakakis, C.E.1
  • 42
    • 84880315451 scopus 로고    scopus 로고
    • Efficient triangle counting in large graphs via degree-based vertex partitioning
    • Kolountzakis M, Miller G, Peng R, Tsourakakis C (2012) Efficient triangle counting in large graphs via degree-based vertex partitioning. Internet Math 8(2):161–185
    • (2012) Internet Math , vol.8 , Issue.2 , pp. 161-185
    • Kolountzakis, M.1    Miller, G.2    Peng, R.3    Tsourakakis, C.4
  • 43
    • 84958007200 scopus 로고    scopus 로고
    • Triadic measures on graphs: the power of wedge sampling
    • Seshadhri C, Pinar A, Kolda T (2013) Triadic measures on graphs: the power of wedge sampling. CoRR, abs/1202.5230
    • (2013) CoRR, abs/1202 , pp. 5230
    • Seshadhri, C.1    Pinar, A.2    Kolda, T.3
  • 44
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodol) 39(1):1–38
    • (1977) J R Stat Soc Ser B (Methodol) , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 46
    • 0032684826 scopus 로고    scopus 로고
    • Minimum message length and kolmogorov complexity
    • Wallace C, Dowe D (1999) Minimum message length and kolmogorov complexity. Comput J 42(4):270–283
    • (1999) Comput J , vol.42 , Issue.4 , pp. 270-283
    • Wallace, C.1    Dowe, D.2
  • 49
    • 0001245990 scopus 로고
    • Structural balance: a generalization of Heider’s theory
    • Cartwright D, Harary F (1956) Structural balance: a generalization of Heider’s theory. Psychol Rev 63(5):277–293
    • (1956) Psychol Rev , vol.63 , Issue.5 , pp. 277-293
    • Cartwright, D.1    Harary, F.2
  • 50
    • 70449568295 scopus 로고    scopus 로고
    • Fast parallel expectation maximization for gaussian mixture models on GPUs using CUDA. In: Proccedings of the 11th IEEE international conference on high performance computing and communications
    • Kumar N, Satoor S, Buck I (2009) Fast parallel expectation maximization for gaussian mixture models on GPUs using CUDA. In: Proccedings of the 11th IEEE international conference on high performance computing and communications, pp 103–109
    • (2009) pp 103–109
    • Kumar, N.1    Satoor, S.2    Buck, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.