메뉴 건너뛰기




Volumn 190, Issue , 2016, Pages 172-178

Recurrent neural network for solving model predictive control problem in application of four-tank benchmark

Author keywords

Discrete time recurrent neural network; Four tank benchmark; Globally exponentially stable

Indexed keywords

CONVEX OPTIMIZATION; MODEL PREDICTIVE CONTROL; RECURRENT NEURAL NETWORKS; TANKS (CONTAINERS);

EID: 84957647966     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2016.01.020     Document Type: Article
Times cited : (35)

References (37)
  • 1
    • 0018015327 scopus 로고
    • Model predictive heuristic control. applications to industrial processes
    • Richalet J., Rault A., Testud J.L., et al. Model predictive heuristic control. applications to industrial processes. Automatica 1978, 14(5):413-428.
    • (1978) Automatica , vol.14 , Issue.5 , pp. 413-428
    • Richalet, J.1    Rault, A.2    Testud, J.L.3
  • 3
    • 0033876326 scopus 로고    scopus 로고
    • Constrained model predictive control. stability and optimality
    • Mayne D.Q., Rawlings J.B., Rao C.V., et al. Constrained model predictive control. stability and optimality. Automatica 2000, 36(6):789-814.
    • (2000) Automatica , vol.36 , Issue.6 , pp. 789-814
    • Mayne, D.Q.1    Rawlings, J.B.2    Rao, C.V.3
  • 4
    • 84931026319 scopus 로고    scopus 로고
    • Fast gradient-based distributed optimisation approach for model predictive control and application in four-tank benchmark
    • Zhou X., Li C., Huang T., et al. Fast gradient-based distributed optimisation approach for model predictive control and application in four-tank benchmark. IET Control Theory Appl. 2015, 9(10):1579-1586. 10.1049/iet-cta.2014.0549.
    • (2015) IET Control Theory Appl. , vol.9 , Issue.10 , pp. 1579-1586
    • Zhou, X.1    Li, C.2    Huang, T.3
  • 5
    • 0024016062 scopus 로고
    • Neural networks for nonlinear programming
    • Kennedy M.P., Chua L.O. Neural networks for nonlinear programming. IEEE Trans. Circuits Syst. 1988, 35(5):554-562.
    • (1988) IEEE Trans. Circuits Syst. , vol.35 , Issue.5 , pp. 554-562
    • Kennedy, M.P.1    Chua, L.O.2
  • 6
    • 3843138428 scopus 로고    scopus 로고
    • A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints
    • Xia Y., Wang J. A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints. IEEE Trans. Circuits Syst. I: Regul. Pap. 2004, 51(7):1385-1394.
    • (2004) IEEE Trans. Circuits Syst. I: Regul. Pap. , vol.51 , Issue.7 , pp. 1385-1394
    • Xia, Y.1    Wang, J.2
  • 7
    • 4143078142 scopus 로고    scopus 로고
    • A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations
    • Xia Y., Feng G., Wang J. A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations. Neural Netw. 2004, 17(7):1003-1015.
    • (2004) Neural Netw. , vol.17 , Issue.7 , pp. 1003-1015
    • Xia, Y.1    Feng, G.2    Wang, J.3
  • 8
    • 15344350315 scopus 로고    scopus 로고
    • A recurrent neural network for solving nonlinear convex programs subject to linear constraints
    • Xia Y., Wang J. A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Trans. Neural Netw. 2005, 16(2):379-386.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.2 , pp. 379-386
    • Xia, Y.1    Wang, J.2
  • 9
    • 0021835689 scopus 로고
    • 'Neural' computation of decisions in optimization problems
    • Tank D., Hopfield J. 'Neural' computation of decisions in optimization problems. Biol. Cybern. 1985, 52(3):141-152.
    • (1985) Biol. Cybern. , vol.52 , Issue.3 , pp. 141-152
    • Tank, D.1    Hopfield, J.2
  • 10
    • 0022721216 scopus 로고
    • Simple 'neural' optimization networks. An A/D converter, signal decision circuit, and a linear programming circuit
    • Tank D., Hopfield J. Simple 'neural' optimization networks. An A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circuits Syst. 1986, 33(5):533-541.
    • (1986) IEEE Trans. Circuits Syst. , vol.33 , Issue.5 , pp. 533-541
    • Tank, D.1    Hopfield, J.2
  • 11
    • 79955775180 scopus 로고    scopus 로고
    • A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark
    • Alvarado I., Limon D., et al. A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark. J. Process Control 2011, 21(5):800-815.
    • (2011) J. Process Control , vol.21 , Issue.5 , pp. 800-815
    • Alvarado, I.1    Limon, D.2
  • 14
    • 80052945341 scopus 로고    scopus 로고
    • Global exponential stability of discrete-time recurrent neural network for solving quadratic programming problems subject to linear constraints
    • Liu Q., Cao J. Global exponential stability of discrete-time recurrent neural network for solving quadratic programming problems subject to linear constraints. Neurocomputing 2011, 74(17):3494-3501.
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3494-3501
    • Liu, Q.1    Cao, J.2
  • 15
    • 69349104383 scopus 로고    scopus 로고
    • Design and application of stable predictive controller using recurrent wavelet neural networks
    • Lu CH. Design and application of stable predictive controller using recurrent wavelet neural networks. IEEE Trans. Ind. Electron. 2009, 56(9):3733-3742.
    • (2009) IEEE Trans. Ind. Electron. , vol.56 , Issue.9 , pp. 3733-3742
    • Lu, C.H.1
  • 16
    • 0035427311 scopus 로고    scopus 로고
    • Structured neural networks for constrained model predictive control
    • Wang L.X., Wan F. Structured neural networks for constrained model predictive control. Automatica 2001, 37(8):1235-1243.
    • (2001) Automatica , vol.37 , Issue.8 , pp. 1235-1243
    • Wang, L.X.1    Wan, F.2
  • 18
    • 84902459537 scopus 로고    scopus 로고
    • Neural network for solving Nash equilibrium problem in application of multiuser power control
    • He X., Yu J., Huang T., et al. Neural network for solving Nash equilibrium problem in application of multiuser power control. Neural Netw. 2014, 57:73-78.
    • (2014) Neural Netw. , vol.57 , pp. 73-78
    • He, X.1    Yu, J.2    Huang, T.3
  • 19
    • 85027931146 scopus 로고    scopus 로고
    • A recurrent neural network for optimal real-time price in smart grid
    • He X., Huang T., Li C., et al. A recurrent neural network for optimal real-time price in smart grid. Neurocomputing 2015, 149:608-612.
    • (2015) Neurocomputing , vol.149 , pp. 608-612
    • He, X.1    Huang, T.2    Li, C.3
  • 20
    • 4744373635 scopus 로고    scopus 로고
    • Generalized neural network for nonsmooth nonlinear programming problems
    • Forti M., Nistri P., Quincampoix M. Generalized neural network for nonsmooth nonlinear programming problems. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51(9):1741-1754.
    • (2004) IEEE Trans. Circuits Syst. I Regul. Pap. , vol.51 , Issue.9 , pp. 1741-1754
    • Forti, M.1    Nistri, P.2    Quincampoix, M.3
  • 21
    • 84952628160 scopus 로고    scopus 로고
    • An intelligent method of swarm neural networks for equalities-constrained nonconvex optimization
    • Che H., Li C., He X., et al. An intelligent method of swarm neural networks for equalities-constrained nonconvex optimization. Neurocomputing 2015, 167:569-577.
    • (2015) Neurocomputing , vol.167 , pp. 569-577
    • Che, H.1    Li, C.2    He, X.3
  • 22
    • 0001315071 scopus 로고    scopus 로고
    • An overview of industrial model predictive control technology
    • Qin S.J., Badgwell T.A. An overview of industrial model predictive control technology. Control Eng. Pract. 1997, 11(7):232-256.
    • (1997) Control Eng. Pract. , vol.11 , Issue.7 , pp. 232-256
    • Qin, S.J.1    Badgwell, T.A.2
  • 23
    • 0041802770 scopus 로고    scopus 로고
    • A survey of industrial model predictive control technology
    • Qin S.J., Badgwell T.A. A survey of industrial model predictive control technology. Control Eng. Pract. 2003, 11(7):733-764.
    • (2003) Control Eng. Pract. , vol.11 , Issue.7 , pp. 733-764
    • Qin, S.J.1    Badgwell, T.A.2
  • 24
    • 0033729274 scopus 로고    scopus 로고
    • Tutorial overview of model predictive control
    • Rawlings J.B. Tutorial overview of model predictive control. IEEE Control Syst. 2000, 20(3):38-52.
    • (2000) IEEE Control Syst. , vol.20 , Issue.3 , pp. 38-52
    • Rawlings, J.B.1
  • 25
    • 79955818928 scopus 로고    scopus 로고
    • Integral-square-error performance of multiplexed model predictive control
    • Ling K.V., Weng K.H., Feng Y., et al. Integral-square-error performance of multiplexed model predictive control. IEEE Trans. Ind. Inform. 2011, 7(2):196-203.
    • (2011) IEEE Trans. Ind. Inform. , vol.7 , Issue.2 , pp. 196-203
    • Ling, K.V.1    Weng, K.H.2    Feng, Y.3
  • 26
    • 84962082810 scopus 로고
    • Model predictive control
    • Camacho E.F., Bordons C. Model predictive control. AIChE J. 1989, 12(3):497-503.
    • (1989) AIChE J. , vol.12 , Issue.3 , pp. 497-503
    • Camacho, E.F.1    Bordons, C.2
  • 27
    • 0032455115 scopus 로고    scopus 로고
    • Nonlinear model predictive control: current status and future directions
    • Henson M.A. Nonlinear model predictive control: current status and future directions. Comput. Chem. Eng. 1998, 23(2):187-202.
    • (1998) Comput. Chem. Eng. , vol.23 , Issue.2 , pp. 187-202
    • Henson, M.A.1
  • 28
    • 0033704177 scopus 로고    scopus 로고
    • The quadruple-tank process. a multivariable laboratory process with an adjustable zero
    • Johansson K.H. The quadruple-tank process. a multivariable laboratory process with an adjustable zero. IEEE Trans. Control Syst. Technol. 2000, 8(3):456-465.
    • (2000) IEEE Trans. Control Syst. Technol. , vol.8 , Issue.3 , pp. 456-465
    • Johansson, K.H.1
  • 29
    • 84896544741 scopus 로고    scopus 로고
    • Innovative NARX recurrent neural network model for ultra-thin shape memory alloy wire
    • Wang H., Song G. Innovative NARX recurrent neural network model for ultra-thin shape memory alloy wire. Neurocomputing 2014, 134:289-295.
    • (2014) Neurocomputing , vol.134 , pp. 289-295
    • Wang, H.1    Song, G.2
  • 30
    • 84945264231 scopus 로고    scopus 로고
    • A projection neural network for constrained quadratic minimax optimization
    • Liu Q., Wang J. A projection neural network for constrained quadratic minimax optimization. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26(11):2891-2900.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , Issue.11 , pp. 2891-2900
    • Liu, Q.1    Wang, J.2
  • 31
    • 84961590546 scopus 로고    scopus 로고
    • A second-order multi-agent network for bound-constrained distributed optimization
    • Liu Q., Wang J. A second-order multi-agent network for bound-constrained distributed optimization. IEEE Trans. Autom. Control 2015, 60(12):3310-3315.
    • (2015) IEEE Trans. Autom. Control , vol.60 , Issue.12 , pp. 3310-3315
    • Liu, Q.1    Wang, J.2
  • 32
    • 84897025856 scopus 로고    scopus 로고
    • A recurrent neural network for solving bilevel linear programming problem
    • He X., Li C., Huang T. A recurrent neural network for solving bilevel linear programming problem. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25(4):824-830.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.4 , pp. 824-830
    • He, X.1    Li, C.2    Huang, T.3
  • 33
    • 85027700003 scopus 로고    scopus 로고
    • Distributed event-triggered scheme for economic dispatch in smart grids
    • in press.
    • C. Li, X. Yu, W. Yu, T. Huang, Z. Liu, Distributed event-triggered scheme for economic dispatch in smart grids, IEEE Trans. Ind. Inform. (2015) , in press. http://dx.doi.org/10.1109/TII.2015.2479558.
    • (2015) IEEE Trans. Ind. Inform.
    • Li, C.1    Yu, X.2    Yu, W.3    Huang, T.4    Liu, Z.5
  • 34
    • 84947969693 scopus 로고    scopus 로고
    • A generalized Hopfield network for nonsmooth constrained convex optimization: Lie derivative approach
    • in press.
    • C. Li, X. Yu, T. Huang, G. Chen, X. He, A generalized Hopfield network for nonsmooth constrained convex optimization: Lie derivative approach, IEEE Trans. Neural Netw. Learn. Syst. (2015) , in press. http://dx.doi.org/10.1109/TNNLS.2015.2496658.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst.
    • Li, C.1    Yu, X.2    Huang, T.3    Chen, G.4    He, X.5
  • 35
    • 84890159638 scopus 로고    scopus 로고
    • Neural network for solving convex quadratic bilevel programming problems
    • He X., Li C., Huang T., Li C. Neural network for solving convex quadratic bilevel programming problems. Neural Netw. 2014, 51:17-25.
    • (2014) Neural Netw. , vol.51 , pp. 17-25
    • He, X.1    Li, C.2    Huang, T.3    Li, C.4
  • 36
    • 78149309512 scopus 로고    scopus 로고
    • Exponential stabilization and synchronization of neural networks with time-varying delays via periodically intermittent control
    • Hu C., Yu J., Jiang H., et al. Exponential stabilization and synchronization of neural networks with time-varying delays via periodically intermittent control. Nonlinearity 2010, 23(10):2369.
    • (2010) Nonlinearity , vol.23 , Issue.10 , pp. 2369
    • Hu, C.1    Yu, J.2    Jiang, H.3
  • 37
    • 84904810449 scopus 로고    scopus 로고
    • Finite-time synchronization of delayed neural networks with Cohen-Grossberg type based on delayed feedback control
    • Hu C., Yu J., Jiang H. Finite-time synchronization of delayed neural networks with Cohen-Grossberg type based on delayed feedback control. Neurocomputing 2014, 143:90-96.
    • (2014) Neurocomputing , vol.143 , pp. 90-96
    • Hu, C.1    Yu, J.2    Jiang, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.