메뉴 건너뛰기




Volumn 167, Issue , 2015, Pages 569-577

An intelligent method of swarm neural networks for equalities-constrained nonconvex optimization

Author keywords

Global best; Nonconvex optimization; Shuffled frog leaping algorithm; Swarm neural networks

Indexed keywords

DIFFERENTIAL EQUATIONS; NETWORK LAYERS; NUMERICAL METHODS; OPTIMIZATION; PROBLEM SOLVING; RECURRENT NEURAL NETWORKS;

EID: 84952628160     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.04.033     Document Type: Article
Times cited : (23)

References (36)
  • 1
    • 84873718753 scopus 로고    scopus 로고
    • New subcarrier allocation for uplink-ofdma under time-varying channels
    • Kim K., Park H., Kwon H. New subcarrier allocation for uplink-ofdma under time-varying channels. IEEE Trans. Commun. 2013, 61(1):7-12.
    • (2013) IEEE Trans. Commun. , vol.61 , Issue.1 , pp. 7-12
    • Kim, K.1    Park, H.2    Kwon, H.3
  • 2
    • 84894122706 scopus 로고    scopus 로고
    • Towards compact and frequency-tunable antenna solutions for MIMO transmission with a single RF chain
    • Yousefbeiki M., Perruisseau-Carrier J. Towards compact and frequency-tunable antenna solutions for MIMO transmission with a single RF chain. IEEE Trans. Antennas Propag. 2013, 62(3):1065-1073.
    • (2013) IEEE Trans. Antennas Propag. , vol.62 , Issue.3 , pp. 1065-1073
    • Yousefbeiki, M.1    Perruisseau-Carrier, J.2
  • 3
    • 84902459537 scopus 로고    scopus 로고
    • Neural network for solving Nash equilibrium problem in application of multiuser power control
    • He X., Yu J., Huang T., Li C., Li C. Neural network for solving Nash equilibrium problem in application of multiuser power control. Neural Netw. 2014, 57:73-78.
    • (2014) Neural Netw. , vol.57 , pp. 73-78
    • He, X.1    Yu, J.2    Huang, T.3    Li, C.4    Li, C.5
  • 4
    • 85027931146 scopus 로고    scopus 로고
    • A recurrent neural network for optimal real-time price in smart grid
    • He X., Huang T., Li C., Che H., Dong Z. A recurrent neural network for optimal real-time price in smart grid. Neurocomputing 2015, 149:608-612.
    • (2015) Neurocomputing , vol.149 , pp. 608-612
    • He, X.1    Huang, T.2    Li, C.3    Che, H.4    Dong, Z.5
  • 5
    • 79960650829 scopus 로고    scopus 로고
    • Neural network computation with DNA strand displacement cascades
    • Qian L., Winfree E., Bruck J. Neural network computation with DNA strand displacement cascades. Nature 2011, 475(7356):368-372.
    • (2011) Nature , vol.475 , Issue.7356 , pp. 368-372
    • Qian, L.1    Winfree, E.2    Bruck, J.3
  • 6
    • 0022721216 scopus 로고
    • Simple 'neural' optimization networks. an A/D converter, signal decision circuit, and a linear programming circuit
    • Tank D., Hopfield J. Simple 'neural' optimization networks. an A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circuits Syst. 1986, 33(5):533-541.
    • (1986) IEEE Trans. Circuits Syst. , vol.33 , Issue.5 , pp. 533-541
    • Tank, D.1    Hopfield, J.2
  • 7
    • 0024016062 scopus 로고
    • Neural networks for nonlinear programming
    • Kennedy M.P., Chua L.O. Neural networks for nonlinear programming. IEEE Trans. Circuits Syst. 1988, 35(5):554-562.
    • (1988) IEEE Trans. Circuits Syst. , vol.35 , Issue.5 , pp. 554-562
    • Kennedy, M.P.1    Chua, L.O.2
  • 8
    • 2942552269 scopus 로고    scopus 로고
    • Real-time computation at the edge of chaos in recurrent neural networks
    • Bertschinger N., Natschläger T. Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 2004, 16(7):1413-1436.
    • (2004) Neural Comput. , vol.16 , Issue.7 , pp. 1413-1436
    • Bertschinger, N.1    Natschläger, T.2
  • 9
    • 0042326343 scopus 로고    scopus 로고
    • Recurrent neural networks with small weights implement definite memory machines
    • Hammer B., Tiňo P. Recurrent neural networks with small weights implement definite memory machines. Neural Comput. 2003, 15(8):1897-1929.
    • (2003) Neural Comput. , vol.15 , Issue.8 , pp. 1897-1929
    • Hammer, B.1    Tiňo, P.2
  • 10
    • 84890135187 scopus 로고    scopus 로고
    • A one-layer recurrent neural network for real-time portfolio optimization with probability criterion
    • Liu Q., Dang C., Huang T. A one-layer recurrent neural network for real-time portfolio optimization with probability criterion. IEEE Trans. Cybern. 2013, 43(1):14-23.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.1 , pp. 14-23
    • Liu, Q.1    Dang, C.2    Huang, T.3
  • 11
    • 84856403606 scopus 로고    scopus 로고
    • Intrinsic adaptation in autonomous recurrent neural networks
    • Marković D., Gros C. Intrinsic adaptation in autonomous recurrent neural networks. Neural Comput. 2012, 24(2):523-540.
    • (2012) Neural Comput. , vol.24 , Issue.2 , pp. 523-540
    • Marković, D.1    Gros, C.2
  • 12
    • 0035432452 scopus 로고    scopus 로고
    • Dynamical stability conditions for recurrent neural networks with unsaturating piecewise linear transfer functions
    • Wersing H., Beyn W., Ritter H. Dynamical stability conditions for recurrent neural networks with unsaturating piecewise linear transfer functions. Neural Comput. 2001, 13(8):1811-1825.
    • (2001) Neural Comput. , vol.13 , Issue.8 , pp. 1811-1825
    • Wersing, H.1    Beyn, W.2    Ritter, H.3
  • 13
    • 0027555144 scopus 로고
    • Neural network for quadratic optimization with bound constraints
    • Bouzerdoum A., Pattison T. Neural network for quadratic optimization with bound constraints. IEEE Trans. Neural Netw. 1993, 4(2):293-304.
    • (1993) IEEE Trans. Neural Netw. , vol.4 , Issue.2 , pp. 293-304
    • Bouzerdoum, A.1    Pattison, T.2
  • 14
    • 0030164663 scopus 로고    scopus 로고
    • A recurrent neural network for solving the shortest path problem
    • Wang J. A recurrent neural network for solving the shortest path problem. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 1996, 43(6):482-486.
    • (1996) IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. , vol.43 , Issue.6 , pp. 482-486
    • Wang, J.1
  • 15
    • 43449132396 scopus 로고    scopus 로고
    • A one-layer recurrent neural network with a discontinuous activation function for linear programming
    • Liu Q., Wang J. A one-layer recurrent neural network with a discontinuous activation function for linear programming. Neural Comput. 2008, 20(5):1366-1383.
    • (2008) Neural Comput. , vol.20 , Issue.5 , pp. 1366-1383
    • Liu, Q.1    Wang, J.2
  • 16
    • 3843138428 scopus 로고    scopus 로고
    • A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints
    • Xia Y., Wang J. A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints. IEEE Trans. Circuits Syst. I 2004, 51(7):1385-1394.
    • (2004) IEEE Trans. Circuits Syst. I , vol.51 , Issue.7 , pp. 1385-1394
    • Xia, Y.1    Wang, J.2
  • 17
    • 49649119936 scopus 로고    scopus 로고
    • A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints
    • Xia Y., Feng G., Wang J. A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. IEEE Trans. Neural Netw. 2008, 19(8):1340-1353.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.8 , pp. 1340-1353
    • Xia, Y.1    Feng, G.2    Wang, J.3
  • 18
    • 67349165051 scopus 로고    scopus 로고
    • A new recurrent neural network for solving convex quadratic programming problems with an application to the-winners-take-all problem
    • Hu X., Zhang B. A new recurrent neural network for solving convex quadratic programming problems with an application to the-winners-take-all problem. IEEE Trans. Neural Netw. 2009, 20(4):654-664.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.4 , pp. 654-664
    • Hu, X.1    Zhang, B.2
  • 19
    • 84897025856 scopus 로고    scopus 로고
    • A recurrent neural network for solving bilevel linear programming problem
    • He X., Li C., Huang T. A recurrent neural network for solving bilevel linear programming problem. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25(4):824-830.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.4 , pp. 824-830
    • He, X.1    Li, C.2    Huang, T.3
  • 20
    • 84890159638 scopus 로고    scopus 로고
    • Neural network for solving convex quadratic bilevel programming problems
    • He X., Li C., Huang T., Li C. Neural network for solving convex quadratic bilevel programming problems. Neural Netw. 2014, 51:17-25.
    • (2014) Neural Netw. , vol.51 , pp. 17-25
    • He, X.1    Li, C.2    Huang, T.3    Li, C.4
  • 21
    • 84894075956 scopus 로고    scopus 로고
    • Neural network for nonsmooth pseudoconvex optimization with general constraints
    • Li Q., Liu Y., Zhu L. Neural network for nonsmooth pseudoconvex optimization with general constraints. Neurocomputing 2014, 131:336-347.
    • (2014) Neurocomputing , vol.131 , pp. 336-347
    • Li, Q.1    Liu, Y.2    Zhu, L.3
  • 22
    • 0034102116 scopus 로고    scopus 로고
    • A recurrent neural network for solving linear projection equations
    • Xia Y., Wang J. A recurrent neural network for solving linear projection equations. Neural Netw. 2000, 13(3):337-350.
    • (2000) Neural Netw. , vol.13 , Issue.3 , pp. 337-350
    • Xia, Y.1    Wang, J.2
  • 23
    • 0036539447 scopus 로고    scopus 로고
    • A projection neural network and its application to constrained optimization problems
    • Xia Y., Leung H., Wang J. A projection neural network and its application to constrained optimization problems. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 2002, 49(4):447-458.
    • (2002) IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. , vol.49 , Issue.4 , pp. 447-458
    • Xia, Y.1    Leung, H.2    Wang, J.3
  • 24
    • 1542291075 scopus 로고    scopus 로고
    • An extended projection neural network for constrained optimization
    • Xia Y. An extended projection neural network for constrained optimization. Neural Comput. 2004, 16(4):863-883.
    • (2004) Neural Comput. , vol.16 , Issue.4 , pp. 863-883
    • Xia, Y.1
  • 25
    • 35148819444 scopus 로고    scopus 로고
    • Solving generally constrained generalized linear variational inequalities using the general projection neural networks
    • Hu X., Wang J. Solving generally constrained generalized linear variational inequalities using the general projection neural networks. IEEE Trans. Neural Netw. 2007, 18(6):1697-1708.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.6 , pp. 1697-1708
    • Hu, X.1    Wang, J.2
  • 26
    • 15344350315 scopus 로고    scopus 로고
    • A recurrent neural network for solving nonlinear convex programs subject to linear constraints
    • Xia Y., Wang J. A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Trans. Neural Netw. 2005, 16(2):379-386.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.2 , pp. 379-386
    • Xia, Y.1    Wang, J.2
  • 27
    • 84897517330 scopus 로고    scopus 로고
    • A collective neurodynamic optimization approach to bound-constrained nonconvex optimization
    • Yan Z., Wang J., Li G. A collective neurodynamic optimization approach to bound-constrained nonconvex optimization. Neural Netw. 2014, 55:20-29.
    • (2014) Neural Netw. , vol.55 , pp. 20-29
    • Yan, Z.1    Wang, J.2    Li, G.3
  • 28
    • 0038363680 scopus 로고    scopus 로고
    • Optimization of water distribution network design using the shuffled frog leaping algorithm
    • EusuffM., Lansey K. Optimization of water distribution network design using the shuffled frog leaping algorithm. J. Water Res. Plann. Manag. 2003, 129(3):210-225.
    • (2003) J. Water Res. Plann. Manag. , vol.129 , Issue.3 , pp. 210-225
    • Eusuff, M.1    Lansey, K.2
  • 29
    • 33244474874 scopus 로고    scopus 로고
    • Shuffled frog-leaping algorithm. a memetic meta-heuristic for discrete optimization
    • EusuffM., Lansey K., Pasha F. Shuffled frog-leaping algorithm. a memetic meta-heuristic for discrete optimization. Eng. Optim. 2006, 38(2):129-154.
    • (2006) Eng. Optim. , vol.38 , Issue.2 , pp. 129-154
    • Eusuff, M.1    Lansey, K.2    Pasha, F.3
  • 30
    • 22344432656 scopus 로고    scopus 로고
    • Comparison among five evolutionary-based optimization algorithms
    • Elbeltagi E., Hegazy T., Grierson D. Comparison among five evolutionary-based optimization algorithms. Adv. Eng. Inform. 2005, 19(1):43-53.
    • (2005) Adv. Eng. Inform. , vol.19 , Issue.1 , pp. 43-53
    • Elbeltagi, E.1    Hegazy, T.2    Grierson, D.3
  • 31
    • 0032208805 scopus 로고    scopus 로고
    • A general methodology for designing globally convergent optimization neural networks
    • Xia Y., Wang J. A general methodology for designing globally convergent optimization neural networks. IEEE Trans. Neural Netw. 1998, 9(6):1331-1343.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.6 , pp. 1331-1343
    • Xia, Y.1    Wang, J.2
  • 33
    • 84908380529 scopus 로고    scopus 로고
    • A one-layer recurrent neural network for constrained nonconvex optimization
    • Li G., Yan Z., Wang J. A one-layer recurrent neural network for constrained nonconvex optimization. Neural Netw. 2015, 61:10-21.
    • (2015) Neural Netw. , vol.61 , pp. 10-21
    • Li, G.1    Yan, Z.2    Wang, J.3
  • 34
    • 84888020093 scopus 로고    scopus 로고
    • A projection neural network with mixed delays for solving linear variational inequality
    • Huang B., Hui G., Gong D., Wang Z., Meng X. A projection neural network with mixed delays for solving linear variational inequality. Neurocomputing 2014, 125:28-32.
    • (2014) Neurocomputing , vol.125 , pp. 28-32
    • Huang, B.1    Hui, G.2    Gong, D.3    Wang, Z.4    Meng, X.5
  • 35
    • 84880761119 scopus 로고    scopus 로고
    • A new result for projection neural networks to solve linear variational inequalities and related optimization problems
    • Huang B., Zhang H., Gong D., Wang Z. A new result for projection neural networks to solve linear variational inequalities and related optimization problems. Neural Comput. Appl. 2013, 23(2):357-362.
    • (2013) Neural Comput. Appl. , vol.23 , Issue.2 , pp. 357-362
    • Huang, B.1    Zhang, H.2    Gong, D.3    Wang, Z.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.