메뉴 건너뛰기




Volumn 20, Issue 5, 2016, Pages 755-774

SPAWNN: A Toolkit for SPatial Analysis With Self-Organizing Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords

NEURAL NETWORKS; OPEN SOURCE SOFTWARE; OPEN SYSTEMS; SPATIAL VARIABLES MEASUREMENT;

EID: 84957570422     PISSN: 13611682     EISSN: 14679671     Source Type: Journal    
DOI: 10.1111/tgis.12180     Document Type: Article
Times cited : (16)

References (76)
  • 3
    • 0029507498 scopus 로고
    • Local indicators of spatial association: LISA
    • Anselin L 1995 Local indicators of spatial association: LISA. Geographical Analysis 27: 93–115
    • (1995) Geographical Analysis , vol.27 , pp. 93-115
    • Anselin, L.1
  • 4
    • 33645929706 scopus 로고    scopus 로고
    • GeoDa: An introduction to spatial data analysis
    • Anselin L, Syabri I, and Kho Y 2006 GeoDa: An introduction to spatial data analysis. Geographical Analysis 38: 5–22
    • (2006) Geographical Analysis , vol.38 , pp. 5-22
    • Anselin, L.1    Syabri, I.2    Kho, Y.3
  • 6
    • 84890774921 scopus 로고    scopus 로고
    • Self-organizing maps as an approach to exploring spatio-temporal diffusion patterns
    • Augustijn E-W and Zurita-Milla R 2013 Self-organizing maps as an approach to exploring spatio-temporal diffusion patterns. International Journal of Health Geographics 12(1): 60
    • (2013) International Journal of Health Geographics , vol.12 , Issue.1 , pp. 60
    • Augustijn, E.-W.1    Zurita-Milla, R.2
  • 7
    • 12344271105 scopus 로고    scopus 로고
    • The self-organizing map, the Geo-SOM, and relevant variants for geosciences
    • Bacao F, Lobo V, and Painho M 2005 The self-organizing map, the Geo-SOM, and relevant variants for geosciences. Computational Geosciences 31: 155–63
    • (2005) Computational Geosciences , vol.31 , pp. 155-163
    • Bacao, F.1    Lobo, V.2    Painho, M.3
  • 8
    • 84991501062 scopus 로고    scopus 로고
    • Improving the correlation hunting in a large quantity of SOM component planes
    • In, de Sa J M, Alexandre L, Duch W, Mandic D, (eds), Berlin, Springer Lecture Notes in Computer Science
    • Barreto-Sanz M A and Perez-Uribe A 2007 Improving the correlation hunting in a large quantity of SOM component planes. In de Sa J M, Alexandre L, Duch W, and Mandic D (eds) Artificial Neural Networks: ICANN 2007. Berlin, Springer Lecture Notes in Computer Science Vol. 4669: 379–88
    • (2007) Artificial Neural Networks: ICANN 2007 , vol.4669 , pp. 379-388
    • Barreto-Sanz, M.A.1    Perez-Uribe, A.2
  • 9
    • 0031711132 scopus 로고    scopus 로고
    • Models for spatial weights: A systematic look
    • Bavaud F 1998 Models for spatial weights: A systematic look. Geographical Analysis 30: 153–71
    • (1998) Geographical Analysis , vol.30 , pp. 153-171
    • Bavaud, F.1
  • 10
    • 0039830274 scopus 로고
    • Unsupervised learning procedures for neural networks
    • Becker S 1991 Unsupervised learning procedures for neural networks. International Journal of Neural Systems 2: 17–33
    • (1991) International Journal of Neural Systems , vol.2 , pp. 17-33
    • Becker, S.1
  • 12
    • 84867449032 scopus 로고    scopus 로고
    • GraphML progress report: Structural layer proposal
    • In, Mutzel P, Jünger M, Leipert S, (eds), Berlin, Springer Lecture Notes in Computer Science
    • Brandes U, Eiglsperger M, Herman I, Himsolt M, and Marshall M S 2002 GraphML progress report: Structural layer proposal. In Mutzel P, Jünger M, and Leipert S (eds) Graph Drawing (GD 2001). Berlin, Springer Lecture Notes in Computer Science Vol. 2265: 501–12
    • (2002) Graph Drawing (GD 2001) , vol.2265 , pp. 501-512
    • Brandes, U.1    Eiglsperger, M.2    Herman, I.3    Himsolt, M.4    Marshall, M.S.5
  • 14
    • 79651475285 scopus 로고    scopus 로고
    • Self-organizing maps applied to ecological sciences
    • Chon T-S 2011 Self-organizing maps applied to ecological sciences. Ecological Informatics 6: 50–61
    • (2011) Ecological Informatics , vol.6 , pp. 50-61
    • Chon, T.-S.1
  • 16
    • 33746593726 scopus 로고    scopus 로고
    • Online data visualization using the neural gas network
    • Estevez P A and Figueroa C J 2006 Online data visualization using the neural gas network. Neural Networks 19: 923–34
    • (2006) Neural Networks , vol.19 , pp. 923-934
    • Estevez, P.A.1    Figueroa, C.J.2
  • 17
    • 0003641269 scopus 로고    scopus 로고
    • From data mining to knowledge discovery: An overview
    • In, Fayyad U M, Piatetsky-Shapiro G, Smyth P, Uthurusamy R, (eds), Cambridge, MA, MIT Press
    • Fayyad U, Piatetsky-Shapiro G, and Smyth P 1996 From data mining to knowledge discovery: An overview. In Fayyad U M, Piatetsky-Shapiro G, Smyth P, and Uthurusamy R (eds) Advances in Knowledge Discovery and Data Mining. Cambridge, MA, MIT Press: 1–34
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 1-34
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 18
    • 0032458753 scopus 로고    scopus 로고
    • Computational neural networks: A new paradigm for spatial analysis
    • Fischer M M 1998 Computational neural networks: A new paradigm for spatial analysis. Environment and Planning A 30: 1873–91
    • (1998) Environment and Planning A , vol.30 , pp. 1873-1891
    • Fischer, M.M.1
  • 19
    • 0013426686 scopus 로고    scopus 로고
    • On the use of self-organizing maps for clustering and visualization
    • Flexer A 2001 On the use of self-organizing maps for clustering and visualization. Intelligent Data Analysis 5: 373–84
    • (2001) Intelligent Data Analysis , vol.5 , pp. 373-384
    • Flexer, A.1
  • 21
    • 73649143896 scopus 로고    scopus 로고
    • Spatial weights matrices
    • Getis, A 2009 Spatial weights matrices. Geographical Analysis 41(4): 404–10
    • (2009) Geographical Analysis , vol.41 , Issue.4 , pp. 404-410
    • Getis, A.1
  • 24
    • 84908220528 scopus 로고    scopus 로고
    • Spatial clustering overview and comparison: Accuracy, sensitivity, and computational expense
    • Grubesic T H, Wei R, and Murray A T 2014 Spatial clustering overview and comparison: Accuracy, sensitivity, and computational expense. Annals of the Association of American Geographers 104: 1134–56
    • (2014) Annals of the Association of American Geographers , vol.104 , pp. 1134-1156
    • Grubesic, T.H.1    Wei, R.2    Murray, A.T.3
  • 25
    • 46649083814 scopus 로고    scopus 로고
    • Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP)
    • Guo D 2008 Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP). International Journal of Geographical Information Science 22: 801–23
    • (2008) International Journal of Geographical Information Science , vol.22 , pp. 801-823
    • Guo, D.1
  • 27
    • 19944422137 scopus 로고    scopus 로고
    • Multivariate analysis and geovisualization with an integrated geographic knowledge discovery approach
    • Guo D, Gahegan M, MacEachren A M, and Zhou B 2005 Multivariate analysis and geovisualization with an integrated geographic knowledge discovery approach. Cartography and Geographic Information Science 32: 113–32
    • (2005) Cartography and Geographic Information Science , vol.32 , pp. 113-132
    • Guo, D.1    Gahegan, M.2    MacEachren, A.M.3    Zhou, B.4
  • 28
    • 84943800163 scopus 로고    scopus 로고
    • Clustering contextual neural gas: A new approach for spatial planning and analysis tasks
    • In, Helbich M, Jokar Arsanjani J, Leitner M, (eds), Berlin, Springer
    • Hagenauer J 2014 Clustering contextual neural gas: A new approach for spatial planning and analysis tasks. In Helbich M, Jokar Arsanjani J, and Leitner M (eds) Computational Approaches for Urban Environments. Berlin, Springer: 77–94
    • (2014) Computational Approaches for Urban Environments , pp. 77-94
    • Hagenauer, J.1
  • 29
    • 85153169539 scopus 로고    scopus 로고
    • Weighted merge context for clustering and quantizing spatial data with self-organizing neural networks
    • in press
    • Hagenauer J 2015 Weighted merge context for clustering and quantizing spatial data with self-organizing neural networks. Journal of Geographical Systems 17: in press
    • (2015) Journal of Geographical Systems , vol.17
    • Hagenauer, J.1
  • 31
    • 84886934053 scopus 로고    scopus 로고
    • Visualization of crime trajectories with self-organizing maps A case study on evaluating the impact of hurricanes on spatio-temporal crime hotspots
    • Paris, France
    • Hagenauer J, Helbich M, and Leitner M 2011 Visualization of crime trajectories with self-organizing maps: A case study on evaluating the impact of hurricanes on spatio-temporal crime hotspots. In Proceedings of the Twenty-fifth International Cartographic Conference, Paris, France
    • (2011) In, Proceedings of the Twenty-fifth International Cartographic Conference
    • Hagenauer, J.1    Helbich, M.2    Leitner, M.3
  • 33
    • 0031168386 scopus 로고    scopus 로고
    • GeoMiner: A system prototype for spatial data mining
    • Han J, Koperski K, and Stefanovic N 1997 GeoMiner: A system prototype for spatial data mining. ACM SIGMOD Record 26: 553–56
    • (1997) ACM SIGMOD Record , vol.26 , pp. 553-556
    • Han, J.1    Koperski, K.2    Stefanovic, N.3
  • 34
    • 0041813144 scopus 로고    scopus 로고
    • Colorbrewer.org: An online tool for selecting colour schemes for maps
    • Harrower M and Brewer C A 2003 Colorbrewer.org: An online tool for selecting colour schemes for maps. Cartographic Journal 40: 27–37
    • (2003) Cartographic Journal , vol.40 , pp. 27-37
    • Harrower, M.1    Brewer, C.A.2
  • 36
    • 84880217681 scopus 로고    scopus 로고
    • Exploration of unstructured narrative crime reports: An unsupervised neural network and point pattern analysis approach
    • Helbich M, Hagenauer J, Leitner M, and Edwards R 2013b Exploration of unstructured narrative crime reports: An unsupervised neural network and point pattern analysis approach. Cartography and Geographic Information Science 40: 326–36
    • (2013) Cartography and Geographic Information Science , vol.40 , pp. 326-336
    • Helbich, M.1    Hagenauer, J.2    Leitner, M.3    Edwards, R.4
  • 38
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond K-means
    • Jain A K 2010 Data clustering: 50 years beyond K-means. Pattern Recognition Letters 31: 651–66
    • (2010) Pattern Recognition Letters , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 39
    • 40749144865 scopus 로고    scopus 로고
    • Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application
    • Kalteh A M, Hjorth P, and Berndtsson R 2008 Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application. Environmental Modelling and Software 23: 835–45
    • (2008) Environmental Modelling and Software , vol.23 , pp. 835-845
    • Kalteh, A.M.1    Hjorth, P.2    Berndtsson, R.3
  • 40
    • 0024640140 scopus 로고
    • An algorithm for drawing general undirected graphs
    • Kamada T and Kawai S 1989 An algorithm for drawing general undirected graphs. Information Processing Letters 31: 7–15
    • (1989) Information Processing Letters , vol.31 , pp. 7-15
    • Kamada, T.1    Kawai, S.2
  • 41
    • 12344277517 scopus 로고
    • Temporal knowledge in locations of activations in a self-organizing map
    • In, Aleksander I, Taylor J, (eds), Amsterdam, Netherlands, North-Holland
    • Kangas J 1992 Temporal knowledge in locations of activations in a self-organizing map. In Aleksander I and Taylor J (eds) Artificial Neural Networks, 2. Amsterdam, Netherlands, North-Holland: 117–20
    • (1992) Artificial Neural Networks , vol.2 , pp. 117-120
    • Kangas, J.1
  • 42
    • 7444265318 scopus 로고    scopus 로고
    • Bibliography of self-organizing map (SOM) papers: 1981–1997
    • Kaski S and Kohonen T 1998 Bibliography of self-organizing map (SOM) papers: 1981–1997. Neural Computing Surveys 1: 102–350
    • (1998) Neural Computing Surveys , vol.1 , pp. 102-350
    • Kaski, S.1    Kohonen, T.2
  • 44
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T 1982 Self-organized formation of topologically correct feature maps. Biological Cybernetics 43: 59–69
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 47
    • 85153159699 scopus 로고    scopus 로고
    • SOM Analyst. WWW document
    • Lacayo-Emery M A 2011 SOM Analyst. WWW document, https://github.com/mlacayoemery/somanalyst
    • (2011)
    • Lacayo-Emery, M.A.1
  • 49
    • 85153164479 scopus 로고    scopus 로고
    • Separate and unequal The neighborhood gap for Blacks, Hispanics and Asians in Metropolitan America. WWW document
    • Logan J R 2011 Separate and unequal: The neighborhood gap for Blacks, Hispanics and Asians in Metropolitan America. WWW document, http://www.s4.brown.edu/us2010/Data/Report/report0727.pdf
    • (2011)
    • Logan, J.R.1
  • 50
    • 0033374040 scopus 로고    scopus 로고
    • Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods
    • MacEachren A M, Wachowicz M, Edsall R, Haug D, and Masters R 1999 Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods. International Journal of Geographical Information Science 13: 311–34
    • (1999) International Journal of Geographical Information Science , vol.13 , pp. 311-334
    • MacEachren, A.M.1    Wachowicz, M.2    Edsall, R.3    Haug, D.4    Masters, R.5
  • 51
    • 0001132486 scopus 로고
    • Competitive hebbian learning rule forms perfectly topology preserving maps
    • In, Gielen S, Kappen B, (eds), London, Springer
    • Martinetz T 1993 Competitive hebbian learning rule forms perfectly topology preserving maps. In Gielen S and Kappen B (eds) ICANN ’93. London, Springer: 427–34
    • (1993) ICANN ’93 , pp. 427-434
    • Martinetz, T.1
  • 52
    • 0027632248 scopus 로고
    • Neural-gas” network for vector quantization and its application to time-series prediction
    • Martinetz T, Berkovich S, and Schulten K 1993 “Neural-gas” network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks 4: 558–69
    • (1993) IEEE Transactions on Neural Networks , vol.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.2    Schulten, K.3
  • 54
    • 85153149266 scopus 로고    scopus 로고
    • Data mining with the Java SOMToolbox. WWW document
    • Mayer R, Dittenbach M, Frank J, Neumayer R, and Lidy T 2011 Data mining with the Java SOMToolbox. WWW document, http://www.ifs.tuwien.ac.at/dm/somtoolbox/
    • (2011)
    • Mayer, R.1    Dittenbach, M.2    Frank, J.3    Neumayer, R.4    Lidy, T.5
  • 55
    • 70449699746 scopus 로고    scopus 로고
    • Spatial data mining and geographic knowledge discovery: An introduction
    • Mennis J and Guo D 2009 Spatial data mining and geographic knowledge discovery: An introduction. Computers, Environment and Urban Systems 33: 403–08
    • (2009) Computers, Environment and Urban Systems , vol.33 , pp. 403-408
    • Mennis, J.1    Guo, D.2
  • 58
    • 0031932940 scopus 로고    scopus 로고
    • Self-organizing maps for outlier detection
    • Munoz A and Muruzabal J 1998 Self-organizing maps for outlier detection. Neurocomputing 18: 33–60
    • (1998) Neurocomputing , vol.18 , pp. 33-60
    • Munoz, A.1    Muruzabal, J.2
  • 59
    • 0033775847 scopus 로고    scopus 로고
    • Integrating attribute and space characteristics in choropleth display and spatial data mining
    • Murray A T and Shyy T-K 2000 Integrating attribute and space characteristics in choropleth display and spatial data mining. International Journal of Geographical Information Science 14: 649–67
    • (2000) International Journal of Geographical Information Science , vol.14 , pp. 649-667
    • Murray, A.T.1    Shyy, T.-K.2
  • 60
    • 0029288718 scopus 로고
    • Interpreting the Kohonen self-organizing feature map using contiguity-constrained clustering
    • Murtagh F 1995 Interpreting the Kohonen self-organizing feature map using contiguity-constrained clustering. Pattern Recognition Letters 16: 399–408
    • (1995) Pattern Recognition Letters , vol.16 , pp. 399-408
    • Murtagh, F.1
  • 61
    • 7444265318 scopus 로고    scopus 로고
    • Bibliography of self-organizing map (SOM) papers: 1998-2001 addendum
    • Oja M, Kaski S, and Kohonen T 2003 Bibliography of self-organizing map (SOM) papers: 1998-2001 addendum. Neural Computing Surveys 3: 1–156
    • (2003) Neural Computing Surveys , vol.3 , pp. 1-156
    • Oja, M.1    Kaski, S.2    Kohonen, T.3
  • 64
    • 67349121273 scopus 로고    scopus 로고
    • Show me the code: Spatial analysis and open source
    • Rey S J 2009 Show me the code: Spatial analysis and open source. Journal of Geographical Systems 11: 191–207
    • (2009) Journal of Geographical Systems , vol.11 , pp. 191-207
    • Rey, S.J.1
  • 66
    • 84868565190 scopus 로고    scopus 로고
    • Visualization of fish community distribution patterns using the self-organizing map: A case study of the Great Morava River system (Serbia)
    • Stojkovic M, Simic V, Milosevic D, Mancev D, and Penczak T 2013 Visualization of fish community distribution patterns using the self-organizing map: A case study of the Great Morava River system (Serbia). Ecological Modelling 248: 20–29
    • (2013) Ecological Modelling , vol.248 , pp. 20-29
    • Stojkovic, M.1    Simic, V.2    Milosevic, D.3    Mancev, D.4    Penczak, T.5
  • 68
    • 15844418774 scopus 로고    scopus 로고
    • Merge SOM for temporal data
    • Strickert M and Hammer B 2005 Merge SOM for temporal data. Neurocomputing 64: 39–71
    • (2005) Neurocomputing , vol.64 , pp. 39-71
    • Strickert, M.1    Hammer, B.2
  • 69
    • 28344436189 scopus 로고    scopus 로고
    • Tobler's first law of geography: A big idea for a small world?
    • Sui D Z 2004 Tobler's first law of geography: A big idea for a small world? Annals of the Association of American Geographers 94: 269–77
    • (2004) Annals of the Association of American Geographers , vol.94 , pp. 269-277
    • Sui, D.Z.1
  • 70
    • 0036883693 scopus 로고    scopus 로고
    • GeoVISTA studio: A codeless visual programming environment for geoscientific data analysis and visualization
    • Takatsuka M and Gahegan M 2002 GeoVISTA studio: A codeless visual programming environment for geoscientific data analysis and visualization. Computers and Geosciences 28: 1131–44
    • (2002) Computers and Geosciences , vol.28 , pp. 1131-1144
    • Takatsuka, M.1    Gahegan, M.2
  • 71
    • 67349242966 scopus 로고    scopus 로고
    • Exploiting data topology in visualization and clustering of self-organizing maps
    • Tasdemir K and Merenyi E 2009 Exploiting data topology in visualization and clustering of self-organizing maps. IEEE Transactions on Neural Networks 20: 549–62
    • (2009) IEEE Transactions on Neural Networks , vol.20 , pp. 549-562
    • Tasdemir, K.1    Merenyi, E.2
  • 72
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Vesanto J 1999 SOM-based data visualization methods. Intelligent Data Analysis 3: 111–26
    • (1999) Intelligent Data Analysis , vol.3 , pp. 111-126
    • Vesanto, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.