메뉴 건너뛰기




Volumn 27, Issue 2, 2013, Pages 251-266

Contextual neural gas for spatial clustering and analysis

Author keywords

machine learning; self organizing maps; spatial cluster analysis

Indexed keywords

ACCURACY ASSESSMENT; ALGORITHM; CLUSTER ANALYSIS; DATA SET; LEARNING; SPATIAL ANALYSIS;

EID: 84874445061     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2012.667106     Document Type: Article
Times cited : (15)

References (44)
  • 1
    • 77955752962 scopus 로고    scopus 로고
    • Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns
    • Andrienko, G. 2010. Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns. Computer Graphics Forum, 29: 913-922.
    • (2010) Computer Graphics Forum , vol.29 , pp. 913-922
    • Andrienko, G.1
  • 2
    • 0141812294 scopus 로고    scopus 로고
    • What is special about spatial data? Alternative perspectives on spatial data analysis
    • Technical Report 89-4. Santa Barbara, CA, National Center for Geographic Information and Analysis
    • Anselin, L. What is special about spatial data? Alternative perspectives on spatial data analysis. Technical Report 89-4. Santa Barbara, CA. National Center for Geographic Information and Analysis.
    • Anselin, L.1
  • 3
    • 0029507498 scopus 로고
    • Local indicators of spatial association - LISA
    • Anselin, L. 1995. Local indicators of spatial association-LISA. Geographical Analysis, 27: 93-115.
    • (1995) Geographical Analysis , vol.27 , pp. 93-115
    • Anselin, L.1
  • 5
    • 35048902358 scopus 로고    scopus 로고
    • Geo-self-organizing map (Geo-SOM) for building and exploring homogeneous regions
    • In: Egenhofer M.J., Freksa C., Miller H.J., editors Berlin, Berlin,: Springer
    • Bação, F., Lobo, V. and Painho, M. 2004. "Geo-self-organizing map (Geo-SOM) for building and exploring homogeneous regions". In Geographic information science, Lecture Notes in Computer Science, Edited by: Egenhofer, M.J., Freksa, C. and Miller, H.J. Vol. 3234, 22-37. Berlin: Springer.
    • (2004) Geographic information science, Lecture Notes in Computer Science , vol.3234 , pp. 22-37
    • Bação, F.1    Lobo, V.2    Painho, M.3
  • 6
    • 12344271105 scopus 로고    scopus 로고
    • The self-organizing map, the Geo-SOM, and relevant variants for geosciences
    • Bacção, F., Lobo, V. and Painho, M. 2005. The self-organizing map, the Geo-SOM, and relevant variants for geosciences. Computational Geosciences, 31: 155-163.
    • (2005) Computational Geosciences , vol.31 , pp. 155-163
    • Bacção, F.1    Lobo, V.2    Painho, M.3
  • 12
    • 84874428821 scopus 로고    scopus 로고
    • Mining image data
    • Mahwah, NJ, Mahwah, NJ,: Lawrence Erlbaum Associates, In: N. Ye, ed
    • Djeraba, C. and Fernandez, G. 2003. "Mining image data". In The handbook of data mining, 637-656. Mahwah, NJ: Lawrence Erlbaum Associates. In: N. Ye, ed.
    • (2003) The handbook of data mining , pp. 637-656
    • Djeraba, C.1    Fernandez, G.2
  • 13
    • 0002433547 scopus 로고    scopus 로고
    • From data mining to knowledge discovery: an overview
    • Cambridge, Cambridge,: MIT Press, In: U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, eds
    • Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. 1996. "From data mining to knowledge discovery: an overview". In Advances in knowledge discovery and data mining, Cambridge: MIT Press. In: U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, eds., 1-34.
    • (1996) Advances in knowledge discovery and data mining , pp. 1-34
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 14
    • 0013426686 scopus 로고    scopus 로고
    • On the use of self-organizing maps for clustering and visualization
    • Flexer, A. 2001. On the use of self-organizing maps for clustering and visualization. Intelligent Data Analysis, 5(5): 373-384.
    • (2001) Intelligent Data Analysis , vol.5 , Issue.5 , pp. 373-384
    • Flexer, A.1
  • 15
    • 0028748949 scopus 로고
    • Growing cell structures-a self-organizing network for unsupervised and supervised learning
    • Fritzke, B. 1994. Growing cell structures-a self-organizing network for unsupervised and supervised learning. Neural Networks, 7: 1441-1460.
    • (1994) Neural Networks , vol.7 , pp. 1441-1460
    • Fritzke, B.1
  • 16
    • 70449699746 scopus 로고    scopus 로고
    • Spatial data mining and geographic knowledge discovery - An introduction
    • Guo, D. and Mennis, J. 2009. Spatial data mining and geographic knowledge discovery-An introduction. Computers Environment and Urban Systems, 33: 403-408.
    • (2009) Computers Environment and Urban Systems , vol.33 , pp. 403-408
    • Guo, D.1    Mennis, J.2
  • 17
    • 84874413736 scopus 로고    scopus 로고
    • Visualization of crime trajectories with self-organizing maps: a case study on evaluating the impact of hurricanes on spatio-temporal crime hotspots
    • Proceedings of the 25th international cartographic conference, Paris, France, 3-8 July, International Cartographic Association
    • Hagenauer, J., Helbich, M. and Leitner, M. Visualization of crime trajectories with self-organizing maps: a case study on evaluating the impact of hurricanes on spatio-temporal crime hotspots. Proceedings of the 25th international cartographic conference. Paris, France. 3-8 July. International Cartographic Association.
    • Hagenauer, J.1    Helbich, M.2    Leitner, M.3
  • 18
    • 84855821796 scopus 로고    scopus 로고
    • Beyond postsuburbia? Multifunctional service agglomeration in Vienna's urban fringe
    • Helbich, M. 2012. Beyond postsuburbia? Multifunctional service agglomeration in Vienna's urban fringe. Journal of Economic & Social Geography, 103: 39-52.
    • (2012) Journal of Economic & Social Geography , vol.103 , pp. 39-52
    • Helbich, M.1
  • 19
    • 85041031381 scopus 로고    scopus 로고
    • Räumliche Regressionsmodelle als leistungsfähige Methoden zur Erklärung der Driving Forces von Zuzügen in der Stadtregion Wien?
    • Helbich, M. and Görgl, P.J. 2010. Räumliche Regressionsmodelle als leistungsfähige Methoden zur Erklärung der Driving Forces von Zuzügen in der Stadtregion Wien? (Spatial regression as a useful technique to explore the driving forces of in-migration in the Viennese urban region?). Raumforschung und Raumordnung, 68: 103-113.
    • (2010) Raumforschung und Raumordnung , vol.68 , pp. 103-113
    • Helbich, M.1    Görgl, P.J.2
  • 20
    • 78650615570 scopus 로고    scopus 로고
    • Postsuburban spatial evolution of Vienna's urban fringe: evidence from point process modeling
    • Helbich, M. and Leitner, M. 2010. Postsuburban spatial evolution of Vienna's urban fringe: evidence from point process modeling. Urban Geography, 31: 1100-1117.
    • (2010) Urban Geography , vol.31 , pp. 1100-1117
    • Helbich, M.1    Leitner, M.2
  • 21
    • 0037044030 scopus 로고    scopus 로고
    • Self-organizing maps: applications to synoptic climatology
    • Hewitson, B.C. and Crane, R.G. 2002. Self-organizing maps: applications to synoptic climatology. Climate Research, 22: 13-26.
    • (2002) Climate Research , vol.22 , pp. 13-26
    • Hewitson, B.C.1    Crane, R.G.2
  • 24
    • 84874418047 scopus 로고    scopus 로고
    • In: Aleksander I., Taylor J., editors Artificial neural networks, 2, Amsterdam, North-Holland
    • Kangas, J. Artificial neural networks, 2. Amsterdam. Temporal knowledge in locations of activations in a self-organizing map, Edited by: Aleksander, I. and Taylor, J. Vol. 1, pp.117-120. North-Holland.
    • Temporal knowledge in locations of activations in a self-organizing map , vol.1 , pp. 117-120
    • Kangas, J.1
  • 25
    • 3042512276 scopus 로고    scopus 로고
    • Knowledge discovery in databases terminology
    • Cambridge, Cambridge,: MIT Press, In: U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, eds
    • Klösgen, W. and Zytkow, J. 1996. "Knowledge discovery in databases terminology". In Advances in knowledge discovery and data mining, 573-592. Cambridge: MIT Press. In: U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, eds.,
    • (1996) Advances in knowledge discovery and data mining , pp. 573-592
    • Klösgen, W.1    Zytkow, J.2
  • 26
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen, T. 1982. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43: 59-69.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 27
    • 0003410791 scopus 로고    scopus 로고
    • 3rd, Secaucus, NJ, Secaucus, NJ,: Springer
    • Kohonen, T. 2001. Self-organizing maps, 3rd, Secaucus, NJ: Springer.
    • (2001) Self-organizing maps
    • Kohonen, T.1
  • 28
    • 61849103486 scopus 로고    scopus 로고
    • Sparse coding neural gas: learning of overcomplete data representations
    • Labusch, K., Barth, E. and Martinetz, T. 2009. Sparse coding neural gas: learning of overcomplete data representations. Neurocomputing, 72: 1547-1555.
    • (2009) Neurocomputing , vol.72 , pp. 1547-1555
    • Labusch, K.1    Barth, E.2    Martinetz, T.3
  • 30
    • 0027632248 scopus 로고
    • Neural-gas" network for vector quantization and its application to time-series prediction
    • Martinetz, T., Berkovich, S. and Schulten, K. 1993. Neural-gas" network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks, 4: 558-569.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.2    Schulten, K.3
  • 31
    • 76349098693 scopus 로고    scopus 로고
    • The data avalanche is here. Shouldn't we be digging?
    • Miller, H.J. 2010. The data avalanche is here. Shouldn't we be digging?. Journal of Regional Science, 50: 181-201.
    • (2010) Journal of Regional Science , vol.50 , pp. 181-201
    • Miller, H.J.1
  • 33
    • 0029288718 scopus 로고
    • Interpreting the Kohonen self-organizing feature map using contiguity-constrained clustering
    • Murtagh, F. 1995. Interpreting the Kohonen self-organizing feature map using contiguity-constrained clustering. Pattern Recognition Letters, 16: 399-408.
    • (1995) Pattern Recognition Letters , vol.16 , pp. 399-408
    • Murtagh, F.1
  • 35
    • 0008309751 scopus 로고
    • Neuroclassification of spatial data
    • Boston, MA, Boston, MA,: Kluwer, In: B.C. Hewitson and R.G. Crane, eds
    • Openshaw, S. 1994. "Neuroclassification of spatial data". In Neural nets: applications in geography, 53-70. Boston, MA: Kluwer. In: B.C. Hewitson and R.G. Crane, eds.
    • (1994) Neural nets: Applications in geography , pp. 53-70
    • Openshaw, S.1
  • 37
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • Sammon, J.W. Jr. 1969. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18: 401-409.
    • (1969) IEEE Transactions on Computers , vol.C-18 , pp. 401-409
    • Sammon Jr., J.W.1
  • 39
    • 0043204296 scopus 로고    scopus 로고
    • Spatialization methods: a cartographic research agenda for non-geographic information visualization
    • Skupin, A. and Fabrikant, S.I. 2003. Spatialization methods: a cartographic research agenda for non-geographic information visualization. Cartography and Geographic Information Science, 30: 95-119.
    • (2003) Cartography and Geographic Information Science , vol.30 , pp. 95-119
    • Skupin, A.1    Fabrikant, S.I.2
  • 40
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - a knowledge reuse framework for combining multiple partitions
    • Strehl, A. and Ghosh, J. 2003. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3: 583-617.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 41
    • 28344436189 scopus 로고    scopus 로고
    • Tobler's first law of geography: a big idea for a small world?
    • Sui, D.Z. 2004. Tobler's first law of geography: a big idea for a small world?. Annals of the Association of American Geographers, 94: 269-277.
    • (2004) Annals of the Association of American Geographers , vol.94 , pp. 269-277
    • Sui, D.Z.1
  • 42
    • 0000565591 scopus 로고
    • A computer movie simulating urban growth in the Detroit region
    • Tobler, W.R. 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography, 46: 234-240.
    • (1970) Economic Geography , vol.46 , pp. 234-240
    • Tobler, W.R.1
  • 43
    • 33751527109 scopus 로고    scopus 로고
    • Clustering with SOM: U*C
    • Paris, France. Paris: University of Paris Pantheon-Sorbonne, In: Proceedings of the workshop on self-organizing maps, 5-8 September
    • Ultsch, A. Clustering with SOM: U*C. Paris, France. Paris: University of Paris Pantheon-Sorbonne. pp.75-82. In: Proceedings of the workshop on self-organizing maps, 5-8 September
    • Ultsch, A.1
  • 44
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Vesanto, J. 1999. SOM-based data visualization methods. Intelligent Data Analysis, 3: 111-126.
    • (1999) Intelligent Data Analysis , vol.3 , pp. 111-126
    • Vesanto, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.