-
2
-
-
34548688436
-
Mining the blogosphere: Age, gender and the varieties of self-expression
-
S. Argamon, M. Koppel, J. W. Pennebaker, and J. Schler. Mining the blogosphere: Age, gender and the varieties of self-expression. First Monday, 12(9), 2007.
-
(2007)
First Monday
, vol.12
, Issue.9
-
-
Argamon, S.1
Koppel, M.2
Pennebaker, J.W.3
Schler, J.4
-
3
-
-
80053276036
-
Discriminating gender on twitter
-
Association for Computational Linguistics
-
J. D. Burger, J. Henderson, G. Kim, and G. Zarrella. Discriminating gender on twitter. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 1301-1309. Association for Computational Linguistics, 2011.
-
(2011)
Proceedings of the Conference on Empirical Methods in Natural Language Processing
, pp. 1301-1309
-
-
Burger, J.D.1
Henderson, J.2
Kim, G.3
Zarrella, G.4
-
4
-
-
80051667271
-
Author gender identification from text
-
N. Cheng, R. Chandramouli, and K. Subbalakshmi. Author gender identification from text. Digital Investigation, 8(1):78-88, 2011.
-
(2011)
Digital Investigation
, vol.8
, Issue.1
, pp. 78-88
-
-
Cheng, N.1
Chandramouli, R.2
Subbalakshmi, K.3
-
5
-
-
84926380337
-
Gender inference of twitter users in non-english contexts
-
M. Ciot, M. Sonderegger, and D. Ruths. Gender inference of twitter users in non-english contexts. In EMNLP, pages 1136-1145, 2013.
-
(2013)
EMNLP
, pp. 1136-1145
-
-
Ciot, M.1
Sonderegger, M.2
Ruths, D.3
-
6
-
-
84890636079
-
Inferring gender from the content of tweets: A region specific example
-
C. Fink, J. Kopecky, and M. Morawski. Inferring gender from the content of tweets: A region specific example. In ICWSM, 2012.
-
(2012)
ICWSM
-
-
Fink, C.1
Kopecky, J.2
Morawski, M.3
-
8
-
-
83255189974
-
Part-of-speech tagging for twitter: Annotation, features, and experiments
-
Stroudsburg, PA, USA, Association for Computational Linguistics
-
K. Gimpel, N. Schneider, B. O'Connor, D. Das, D. Mills, J. Eisenstein, M. Heilman, D. Yogatama, J. Flanigan, and N. A. Smith. Part-of-speech tagging for twitter: Annotation, features, and experiments. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers - Volume 2, HLT'11, pages 42-47, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.
-
(2011)
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers - Volume 2, HLT'11
, pp. 42-47
-
-
Gimpel, K.1
Schneider, N.2
O'Connor, B.3
Das, D.4
Mills, D.5
Eisenstein, J.6
Heilman, M.7
Yogatama, D.8
Flanigan, J.9
Smith, N.A.10
-
9
-
-
84055188781
-
Three eras of survey research
-
R. M. Groves. Three eras of survey research. Public Opinion Quarterly, 75(5):861-871, 2011.
-
(2011)
Public Opinion Quarterly
, vol.75
, Issue.5
, pp. 861-871
-
-
Groves, R.M.1
-
10
-
-
84893226170
-
What is he/she like?: Estimating twitter user attributes from contents and social neighbors
-
New York, NY, USA, ACM
-
J. Ito, T. Hoshide, H. Toda, T. Uchiyama, and K. Nishida. What is he/she like?: Estimating twitter user attributes from contents and social neighbors. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM'13, pages 1448-1450, New York, NY, USA, 2013. ACM.
-
(2013)
Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM'13
, pp. 1448-1450
-
-
Ito, J.1
Hoshide, T.2
Toda, H.3
Uchiyama, T.4
Nishida, K.5
-
11
-
-
84883300452
-
What's in a name? Using first names as features for gender inference in twitter
-
W. Liu and D. Ruths. What's in a name? using first names as features for gender inference in twitter. In Analyzing Microtext: 2013 AAAI Spring Symposium, 2013.
-
(2013)
Analyzing Microtext: 2013 AAAI Spring Symposium
-
-
Liu, W.1
Ruths, D.2
-
13
-
-
85070357722
-
Understanding the demographics of twitter users
-
A. Mislove, S. Lehmann, Y.-Y. Ahn, J.-P. Onnela, and J. N. Rosenquist. Understanding the demographics of twitter users. ICWSM, 11:5th, 2011.
-
(2011)
ICWSM, 11:5th
-
-
Mislove, A.1
Lehmann, S.2
Ahn, Y.-Y.3
Onnela, J.-P.4
Rosenquist, J.N.5
-
14
-
-
84900441932
-
"How old do you think I am?" A study of language and age in twitter
-
D. Nguyen, R. Gravel, D. Trieschnigg, and T. Meder. "how old do you think i am?" a study of language and age in twitter. In ICWSM, 2013.
-
(2013)
ICWSM
-
-
Nguyen, D.1
Gravel, R.2
Trieschnigg, D.3
Meder, T.4
-
15
-
-
84956983074
-
Tweetgenie: Automatic age prediction from tweets
-
Autumn
-
D. Nguyen, R. Gravel, D. Trieschnigg, and T. Meder. Tweetgenie: automatic age prediction from tweets. ACM SIGWEB Newsletter, 4(Autumn):4, 2013.
-
(2013)
ACM SIGWEB Newsletter
, vol.4
, pp. 4
-
-
Nguyen, D.1
Gravel, R.2
Trieschnigg, D.3
Meder, T.4
-
16
-
-
85071654935
-
Author age prediction from text using linear regression
-
Association for Computational Linguistics
-
D. Nguyen, N. A. Smith, and C. P. Rosé. Author age prediction from text using linear regression. In Proceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, pages 115-123. Association for Computational Linguistics, 2011.
-
(2011)
Proceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities
, pp. 115-123
-
-
Nguyen, D.1
Smith, N.A.2
Rosé, C.P.3
-
18
-
-
80052652741
-
Democrats, republicans and starbucks afficionados: User classification in twitter
-
New York, NY, USA, ACM
-
M. Pennacchiotti and A.-M. Popescu. Democrats, republicans and starbucks afficionados: User classification in twitter. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'11, pages 430-438, New York, NY, USA, 2011. ACM.
-
(2011)
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'11
, pp. 430-438
-
-
Pennacchiotti, M.1
Popescu, A.-M.2
-
19
-
-
84922175669
-
Overview of the author profiling task at pan 2013
-
F. Rangel, P. Rosso, M. Koppel, E. Stamatatos, and G. Inches. Overview of the author profiling task at pan 2013. Notebook Papers of CLEF, pages 23-26, 2013.
-
(2013)
Notebook Papers of CLEF
, pp. 23-26
-
-
Rangel, F.1
Rosso, P.2
Koppel, M.3
Stamatatos, E.4
Inches, G.5
-
20
-
-
78651284817
-
Classifying latent user attributes in twitter
-
ACM
-
D. Rao, D. Yarowsky, A. Shreevats, and M. Gupta. Classifying latent user attributes in twitter. In Proceedings of the 2nd international workshop on Search and mining user-generated contents, pages 37-44. ACM, 2010.
-
(2010)
Proceedings of the 2nd International Workshop on Search and Mining User-generated Contents
, pp. 37-44
-
-
Rao, D.1
Yarowsky, D.2
Shreevats, A.3
Gupta, M.4
-
21
-
-
33645061491
-
Gender, cancer experience and internet use: A comparative keyword analysis of interviews and online cancer support groups
-
C. Seale, S. Ziebland, and J. Charteris-Black. Gender, cancer experience and internet use: a comparative keyword analysis of interviews and online cancer support groups. Social science & medicine, 62(10):2577-2590, 2006.
-
(2006)
Social Science & Medicine
, vol.62
, Issue.10
, pp. 2577-2590
-
-
Seale, C.1
Ziebland, S.2
Charteris-Black, J.3
-
22
-
-
84884229586
-
Knowing the tweeters: Deriving sociologically relevant demographics from twitter
-
L. Sloan, J. Morgan, W. Housley, M. Williams, A. Edwards, P. Burnap, and O. Rana. Knowing the tweeters: Deriving sociologically relevant demographics from twitter. Sociological Research Online, 18(3):7, 2013.
-
(2013)
Sociological Research Online
, vol.18
, Issue.3
, pp. 7
-
-
Sloan, L.1
Morgan, J.2
Housley, W.3
Williams, M.4
Edwards, A.5
Burnap, P.6
Rana, O.7
-
24
-
-
84899068304
-
Semi-automatic classification of birdsong elements using a linear support vector machine
-
R. O. Tachibana, N. Oosugi, and K. Okanoya. Semi-automatic classification of birdsong elements using a linear support vector machine. PloS one, 9(3):e92584, 2014.
-
(2014)
PloS One
, vol.9
, Issue.3
, pp. e92584
-
-
Tachibana, R.O.1
Oosugi, N.2
Okanoya, K.3
-
25
-
-
0001436725
-
Usability inspection methods
-
John Wiley & Sons, Inc., New York, NY, USA
-
C. Wharton, J. Rieman, C. Lewis, and P. Polson. Usability inspection methods. chapter The Cognitive Walkthrough Method: A Practitioner's Guide, pages 105-140. John Wiley & Sons, Inc., New York, NY, USA, 1994.
-
(1994)
Chapter the Cognitive Walkthrough Method: A Practitioner's Guide
, pp. 105-140
-
-
Wharton, C.1
Rieman, J.2
Lewis, C.3
Polson, P.4
-
26
-
-
84890629874
-
Homophily and latent attribute inference: Inferring latent attributes of twitter users from neighbors
-
F. A. Zamal, W. Liu, and D. Ruths. Homophily and latent attribute inference: Inferring latent attributes of twitter users from neighbors. In ICWSM, 2012.
-
(2012)
ICWSM
-
-
Zamal, F.A.1
Liu, W.2
Ruths, D.3
|