메뉴 건너뛰기




Volumn , Issue , 2011, Pages 430-438

Democrats, republicans and starbucks afficionados: User classification in twitter

Author keywords

Machine learning; Microblogging; Social media; User profiling

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; SOCIAL NETWORKING (ONLINE);

EID: 80052652741     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2020408.2020477     Document Type: Conference Paper
Times cited : (279)

References (26)
  • 1
    • 80053225960 scopus 로고    scopus 로고
    • Sentiment detection on twitter from biased and noisy data
    • L. Barbosa and F. J. Robust Sentiment Detection on Twitter from Biased and Noisy Data. In Proceedings of COLING, 2010.
    • (2010) Proceedings of COLING
    • Barbosa, L.1    Robust, F.J.2
  • 3
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. JMLR, (3):993-1022, 2002.
    • (2002) JMLR , Issue.3 , pp. 993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.3
  • 5
    • 80052680797 scopus 로고    scopus 로고
    • Burson-Marsteller. Press Releases Archives
    • Burson-Marsteller. Press Releases Archives. In Archive of Sept 10, 2010.
    • (2010) Archive of Sept , vol.10
  • 6
    • 78651274362 scopus 로고    scopus 로고
    • You are where you tweet: A Content-based Approach to Geo-locating Twitter Users
    • Z. Cheng, J. Caverlee, and K. Lee. You are where you tweet: A Content-based Approach to Geo-locating Twitter Users. In Proceedings of CIKM, 2010.
    • (2010) Proceedings of CIKM
    • Cheng, Z.1    Caverlee, J.2    Lee, K.3
  • 7
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5):1189-1232, 2001. (Pubitemid 33405972)
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 8
    • 33750697973 scopus 로고    scopus 로고
    • Recent advances in predictive (machine) learning
    • DOI 10.1007/s00357-006-0012-4
    • J. H. Friedman. Recent Advances in Predictive (Machine) Learning. Journal of Classification, 23(2):175-197, 2006. (Pubitemid 44704840)
    • (2006) Journal of Classification , vol.23 , Issue.2 , pp. 175-197
    • Friedman, J.H.1
  • 9
    • 80052648240 scopus 로고    scopus 로고
    • Modeling latent biographic attributes in conversational genres
    • N. Garera and D. Yarovsky. Modeling latent biographic attributes in conversational genres. In Proceedings of CIKM, 2007.
    • (2007) Proceedings of CIKM
    • Garera, N.1    Yarovsky, D.2
  • 13
    • 80053354603 scopus 로고    scopus 로고
    • CRYSTAL: Analyzing Predictive opinions on the web
    • S. Kim and E. Hovy. CRYSTAL: Analyzing Predictive Opinions on the Web. In Proceedings of EMNLP, 2007.
    • (2007) Proceedings of EMNLP
    • Kim, S.1    Hovy, E.2
  • 14
    • 78651330475 scopus 로고    scopus 로고
    • Inferring gender of movie reviewers: Exploiting writing style, content and metadata
    • J. Otterbacher. Inferring Gender of Movie Reviewers: Exploiting Writing Style, Content and Metadata. In Proceedings of CIKM, 2010.
    • (2010) Proceedings of CIKM
    • Otterbacher, J.1
  • 15
    • 84880914260 scopus 로고    scopus 로고
    • What you seek is what you get: Extraction of class attributes from query logs
    • M. Pasca. What you seek is what you get: Extraction of class attributes from query logs. In Proceedings of IJCAI, 2007.
    • (2007) Proceedings of IJCAI
    • Pasca, M.1
  • 16
    • 79955380017 scopus 로고    scopus 로고
    • Investigating topic models for social media user recommendation
    • M. Pennacchiotti and S. Gurumurthy. Investigating Topic Models for Social Media User Recommendation. In Proceedings of WWW, 2011.
    • (2011) Proceedings of WWW
    • Pennacchiotti, M.1    Gurumurthy, S.2
  • 17
    • 80053519768 scopus 로고    scopus 로고
    • Report May 2010
    • Quantcast. Report May 2010. Inhttp://www.quantcast.com/twitter.com, 2010.
    • (2010) Quantcast
  • 19
    • 83255167255 scopus 로고    scopus 로고
    • Classifying latent user attributes in twitter
    • D. Rao, Y. D., A. Shreevats, and M. Gupta. Classifying Latent User Attributes in Twitter. In Proceedings of SMUC-10, pages 710-718, 2010.
    • (2010) Proceedings of SMUC-10 , pp. 710-718
    • Rao, D.1    Shreevats, A.2    Gupta, M.3
  • 23
    • 80053357527 scopus 로고    scopus 로고
    • Get out the vote: Determining support or opposition from congressional floor-debate transcripts
    • M. Thomas, B. Pang, and L. Lee. Get out the vote: determining support or opposition from congressional floor-debate transcripts. In Proceedings of EMNLP, 2006.
    • (2006) Proceedings of EMNLP
    • Thomas, M.1    Pang, B.2    Lee, L.3
  • 25
    • 33644632271 scopus 로고    scopus 로고
    • Annotating expressions of opinions and emotions in language
    • DOI 10.1007/s10579-005-7880-9, Advances in Questioning Answering
    • J. Wiebe, T. Wilson, and C. Cardie. Annotating expressions of opinions and emotions in language. In Language Resources and Evaluation, pages 165-210, 2005. (Pubitemid 43320361)
    • (2005) Language Resources and Evaluation , vol.39 , Issue.2-3 , pp. 165-210
    • Wiebe, J.1    Wilson, T.2    Cardie, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.