메뉴 건너뛰기




Volumn 380, Issue 9-10, 2016, Pages 1049-1055

Negative differential resistance and rectifying performance induced by doped graphene nanoribbons p-n device

Author keywords

Electronic transport properties; First principles; Graphene nanoribbons; Negative differential resistance; Rectifying performance

Indexed keywords

CALCULATIONS; DENSITY FUNCTIONAL THEORY; GRAPHENE; GRAPHENE DEVICES; GRAPHENE NANORIBBON; GRAPHITE ELECTRODES; NEGATIVE RESISTANCE; TRANSPORT PROPERTIES;

EID: 84955471818     PISSN: 03759601     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physleta.2016.01.010     Document Type: Article
Times cited : (40)

References (30)
  • 1
    • 33751348065 scopus 로고    scopus 로고
    • Energy gaps in graphene nanoribbons
    • Y. Son, M.L. Cohen, and S.G. Louie Energy gaps in graphene nanoribbons Phys. Rev. Lett. 97 21 2006 216803
    • (2006) Phys. Rev. Lett. , vol.97 , Issue.21
    • Son, Y.1    Cohen, M.L.2    Louie, S.G.3
  • 2
    • 34547334459 scopus 로고    scopus 로고
    • Energy band-gap engineering of graphene nanoribbons
    • M.Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim Energy band-gap engineering of graphene nanoribbons Phys. Rev. Lett. 98 20 2007 206805
    • (2007) Phys. Rev. Lett. , vol.98 , Issue.20
    • Han, M.Y.1    Ozyilmaz, B.2    Zhang, Y.3    Kim, P.4
  • 4
    • 0000781318 scopus 로고    scopus 로고
    • Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
    • K. Nakada, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus Edge state in graphene ribbons: nanometer size effect and edge shape dependence Phys. Rev. B 54 24 1996 17954
    • (1996) Phys. Rev. B , vol.54 , Issue.24 , pp. 17954
    • Nakada, K.1    Fujita, M.2    Dresselhaus, G.3    Dresselhaus, M.S.4
  • 5
    • 69249125712 scopus 로고    scopus 로고
    • Application of quantum chemistry to nanotechnology: Electron and spin transport in molecular devices
    • W.Y. Kim, Y.C. Choi, S.K. Min, Y. Cho, and K.S. Kim Application of quantum chemistry to nanotechnology: electron and spin transport in molecular devices Chem. Soc. Rev. 38 8 2009 2319 2333
    • (2009) Chem. Soc. Rev. , vol.38 , Issue.8 , pp. 2319-2333
    • Kim, W.Y.1    Choi, Y.C.2    Min, S.K.3    Cho, Y.4    Kim, K.S.5
  • 6
    • 80053566711 scopus 로고    scopus 로고
    • Negative differential resistance in mono and bilayer graphene pn junctions
    • G. Fiori Negative differential resistance in mono and bilayer graphene pn junctions IEEE Electron Device Lett. 32 10 2011 1334 1336
    • (2011) IEEE Electron Device Lett. , vol.32 , Issue.10 , pp. 1334-1336
    • Fiori, G.1
  • 7
    • 84863199500 scopus 로고    scopus 로고
    • Rectification at graphene-semiconductor interfaces: Zero-gap semiconductor-based diodes
    • S. Tongay, M. Lemaitre, X. Miao, B. Gila, B.R. Appleton, and A.F. Hebard Rectification at graphene-semiconductor interfaces: zero-gap semiconductor-based diodes Phys. Rev. X 2 1 2012 11002
    • (2012) Phys. Rev. X , vol.2 , Issue.1 , pp. 11002
    • Tongay, S.1    Lemaitre, M.2    Miao, X.3    Gila, B.4    Appleton, B.R.5    Hebard, A.F.6
  • 8
    • 84996237073 scopus 로고
    • Electrical resistance of disordered one-dimensional lattices
    • R. Landauer Electrical resistance of disordered one-dimensional lattices Philos. Mag. 21 172 1970 863 867
    • (1970) Philos. Mag. , vol.21 , Issue.172 , pp. 863-867
    • Landauer, R.1
  • 9
    • 28344451958 scopus 로고
    • Molecular rectifiers
    • A. Aviram, and Mark A. Ratner Molecular rectifiers Chem. Phys. Lett. 29 2 1974 277 283
    • (1974) Chem. Phys. Lett. , vol.29 , Issue.2 , pp. 277-283
    • Aviram, A.1    Ratner, M.A.2
  • 10
    • 84865773601 scopus 로고    scopus 로고
    • Doped GNR p - N junction as high performance NDR and rectifying device
    • A. Pramanik, S. Sarkar, and P. Sarkar Doped GNR p - n junction as high performance NDR and rectifying device J. Phys. Chem. C 116 34 2012 18064 18069
    • (2012) J. Phys. Chem. C , vol.116 , Issue.34 , pp. 18064-18069
    • Pramanik, A.1    Sarkar, S.2    Sarkar, P.3
  • 12
    • 67650373496 scopus 로고    scopus 로고
    • Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study
    • J.N. Hu, X.L. Ruan, and Y.P. Chen Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study Nano Lett. 9 7 2009 2730 2735
    • (2009) Nano Lett. , vol.9 , Issue.7 , pp. 2730-2735
    • Hu, J.N.1    Ruan, X.L.2    Chen, Y.P.3
  • 13
    • 84908024298 scopus 로고    scopus 로고
    • Enhance the stability of α-graphyne nanoribbons by dihydrogenation
    • Y.H. Zhou, S.H. Tan, and K.Q. Chen Enhance the stability of α-graphyne nanoribbons by dihydrogenation Org. Electron. 15 11 2014 3392 3398
    • (2014) Org. Electron. , vol.15 , Issue.11 , pp. 3392-3398
    • Zhou, Y.H.1    Tan, S.H.2    Chen, K.Q.3
  • 14
    • 77954882233 scopus 로고    scopus 로고
    • Current rectification in molecular junctions produced by local potential fields
    • T. Kostyrko, V.M. García-Suárez, C.J. Lambert, and B.R. Bułka Current rectification in molecular junctions produced by local potential fields Phys. Rev. B 81 2010 085308
    • (2010) Phys. Rev. B , vol.81
    • Kostyrko, T.1    García-Suárez, V.M.2    Lambert, C.J.3    Bułka, B.R.4
  • 15
    • 76449103410 scopus 로고    scopus 로고
    • Negative differential resistance and rectifying behaviors in phenalenyl molecular device with different contact geometries
    • Z.Q. Fan, and K.Q. Chen Negative differential resistance and rectifying behaviors in phenalenyl molecular device with different contact geometries Appl. Phys. Lett. 96 5 2010 053509
    • (2010) Appl. Phys. Lett. , vol.96 , Issue.5
    • Fan, Z.Q.1    Chen, K.Q.2
  • 16
    • 84920621516 scopus 로고    scopus 로고
    • High-performance current rectification in a molecular device with doped graphene electrodes
    • J. Li, Z.H. Zhang, M. Qiu, C. Yuan, X.Q. Deng, Z.Q. Fan, G.P. Tang, and B. Liang High-performance current rectification in a molecular device with doped graphene electrodes Carbon 80 2014 575 582
    • (2014) Carbon , vol.80 , pp. 575-582
    • Li, J.1    Zhang, Z.H.2    Qiu, M.3    Yuan, C.4    Deng, X.Q.5    Fan, Z.Q.6    Tang, G.P.7    Liang, B.8
  • 17
    • 84875370870 scopus 로고    scopus 로고
    • Modulation of rectification and negative differential resistance in graphene nanoribbon by nitrogen doping
    • P. Zhao, D.S. Liu, S.J. Li, and G. Chen Modulation of rectification and negative differential resistance in graphene nanoribbon by nitrogen doping Phys. Lett. A 377 15 2013 1134 1138
    • (2013) Phys. Lett. A , vol.377 , Issue.15 , pp. 1134-1138
    • Zhao, P.1    Liu, D.S.2    Li, S.J.3    Chen, G.4
  • 18
    • 84869094478 scopus 로고    scopus 로고
    • Giant low bias negative differential resistance induced by nitrogen doping in graphene nanoribbon
    • P. Zhao, D.S. Liu, S.J. Li, and G. Chen Giant low bias negative differential resistance induced by nitrogen doping in graphene nanoribbon Chem. Phys. Lett. 554 2012 172 176
    • (2012) Chem. Phys. Lett. , vol.554 , pp. 172-176
    • Zhao, P.1    Liu, D.S.2    Li, S.J.3    Chen, G.4
  • 19
    • 84904105441 scopus 로고    scopus 로고
    • Rectification induced in N 2 AA-doped armchair graphene nanoribbon device
    • T. Chen, X.F. Li, L.L. Wang, K.W. Luo, and L. Xu Rectification induced in N 2 AA-doped armchair graphene nanoribbon device J. Appl. Phys. 116 1 2014 13702
    • (2014) J. Appl. Phys. , vol.116 , Issue.1
    • Chen, T.1    Li, X.F.2    Wang, L.L.3    Luo, K.W.4    Xu, L.5
  • 20
    • 34547293456 scopus 로고    scopus 로고
    • Electronic and transport properties of boron-doped graphene nanoribbons
    • T.B. Martins, R.H. Miwa, Antonio J.R. Da Silva, and A.J.R.A. Fazzio Electronic and transport properties of boron-doped graphene nanoribbons Phys. Rev. Lett. 98 19 2007 196803
    • (2007) Phys. Rev. Lett. , vol.98 , Issue.19
    • Martins, T.B.1    Miwa, R.H.2    Da Silva, A.J.R.3    Fazzio, A.J.R.A.4
  • 21
    • 65449166838 scopus 로고    scopus 로고
    • Graphene nanoribbon as a negative differential resistance device
    • R. Hao, Q.X. Li, Y. Luo, and J.L. Yang Graphene nanoribbon as a negative differential resistance device Appl. Phys. Lett. 94 17 2009 173110
    • (2009) Appl. Phys. Lett. , vol.94 , Issue.17 , pp. 173110
    • Hao, R.1    Li, Q.X.2    Luo, Y.3    Yang, J.L.4
  • 22
    • 79960179267 scopus 로고    scopus 로고
    • Nitrogen doping-induced rectifying behavior with large rectifying ratio in graphene nanoribbons device
    • J. Zeng, K.Q. Chen, J. He, Z.Q. Fan, and X.J. Zhang Nitrogen doping-induced rectifying behavior with large rectifying ratio in graphene nanoribbons device J. Appl. Phys. 109 12 2011 124502
    • (2011) J. Appl. Phys. , vol.109 , Issue.12
    • Zeng, J.1    Chen, K.Q.2    He, J.3    Fan, Z.Q.4    Zhang, X.J.5
  • 23
    • 84943415892 scopus 로고    scopus 로고
    • Influence of boundary types on rectifying behaviors in hexagonal boron-nitride/graphene nanoribbon heterojunctions
    • J. Peng, Y.H. Zhou, and K.Q. Chen Influence of boundary types on rectifying behaviors in hexagonal boron-nitride/graphene nanoribbon heterojunctions Org. Electron. 27 2015 137 142
    • (2015) Org. Electron. , vol.27 , pp. 137-142
    • Peng, J.1    Zhou, Y.H.2    Chen, K.Q.3
  • 24
    • 84896601139 scopus 로고    scopus 로고
    • Negative differential resistance behavior in phosphorus-doped armchair graphene nanoribbon junctions
    • Y.H. Zhou, D.L. Zhang, J.B. Zhang, C. Ye, and X.S. Miao Negative differential resistance behavior in phosphorus-doped armchair graphene nanoribbon junctions J. Appl. Phys. 115 7 2014 73703
    • (2014) J. Appl. Phys. , vol.115 , Issue.7
    • Zhou, Y.H.1    Zhang, D.L.2    Zhang, J.B.3    Ye, C.4    Miao, X.S.5
  • 25
    • 84892163929 scopus 로고    scopus 로고
    • Phosphorus-doping-induced rectifying behavior in armchair graphene nanoribbons devices
    • Y.H. Zhou, J.B. Zhang, D.L. Zhang, C. Ye, and X.S. Miao Phosphorus-doping-induced rectifying behavior in armchair graphene nanoribbons devices J. Appl. Phys. 115 1 2014 13705
    • (2014) J. Appl. Phys. , vol.115 , Issue.1
    • Zhou, Y.H.1    Zhang, J.B.2    Zhang, D.L.3    Ye, C.4    Miao, X.S.5
  • 26
    • 85000460277 scopus 로고    scopus 로고
    • The electronic transport properties in boron-doped armchair graphene nanoribbon junctions
    • Y.H. Zhou, J.J. Wu, P. He, T.F. Deng, S.Y. Du, and C. Ye The electronic transport properties in boron-doped armchair graphene nanoribbon junctions Nanosci. Nanotechnol. Lett. 7 8 2015 630 636
    • (2015) Nanosci. Nanotechnol. Lett. , vol.7 , Issue.8 , pp. 630-636
    • Zhou, Y.H.1    Wu, J.J.2    He, P.3    Deng, T.F.4    Du, S.Y.5    Ye, C.6
  • 27
    • 79960503538 scopus 로고    scopus 로고
    • The peculiar transport properties in pn junctions of doped graphene nanoribbons
    • D.H. Zhang, K.L. Yao, and G.Y. Gao The peculiar transport properties in pn junctions of doped graphene nanoribbons J. Appl. Phys. 110 1 2011 13718
    • (2011) J. Appl. Phys. , vol.110 , Issue.1
    • Zhang, D.H.1    Yao, K.L.2    Gao, G.Y.3
  • 29
    • 14844346251 scopus 로고    scopus 로고
    • Changes of coupling between the electrodes and the molecule under external bias bring negative differential resistance
    • X.Q. Shi, X.H. Zheng, Z.X. Dai, Y. Wang, and Z. Zeng Changes of coupling between the electrodes and the molecule under external bias bring negative differential resistance J. Phys. Chem. B 109 109 2005 3334 3339
    • (2005) J. Phys. Chem. B , vol.109 , Issue.109 , pp. 3334-3339
    • Shi, X.Q.1    Zheng, X.H.2    Dai, Z.X.3    Wang, Y.4    Zeng, Z.5
  • 30
    • 0037162843 scopus 로고    scopus 로고
    • Tracing black hole mergers through radio lobe morphology
    • D. Merritt Tracing black hole mergers through radio lobe morphology Science 297 5585 2002 1310 1313
    • (2002) Science , vol.297 , Issue.5585 , pp. 1310-1313
    • Merritt, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.