-
1
-
-
33744469329
-
Electronic confinement and coherence in patterned epitaxial graphene
-
10.1126/science.1125925
-
C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Electronic confinement and coherence in patterned epitaxial graphene,"Science 312, 1191-1196 (2006). 10.1126/science.1125925
-
(2006)
Science
, vol.312
, pp. 1191-1196
-
-
Berger, C.1
Song, Z.M.2
Li, X.B.3
Wu, X.S.4
Brown, N.5
Naud, C.6
Mayou, D.7
Li, T.B.8
Hass, J.9
Marchenkov, A.N.10
Conrad, E.H.11
First, P.N.12
De Heer, W.A.13
-
2
-
-
84863263072
-
Z-like conducting pathways in zigzag graphene nanoribbons with edge protrusions
-
10.1021/jp3003646
-
Y. P. An, W. Ji, and Z. Q. Yang, "Z-like conducting pathways in zigzag graphene nanoribbons with edge protrusions,"J. Phys. Chem. C 116 (9), 5915-5919 (2012). 10.1021/jp3003646
-
(2012)
J. Phys. Chem. C
, vol.116
, Issue.9
, pp. 5915-5919
-
-
An, Y.P.1
Ji, W.2
Yang, Z.Q.3
-
3
-
-
65449166838
-
Graphene nanoribbon as a negative differential resistance device
-
10.1063/1.3126451
-
H. Ren, Q. X. Li, Y. Luo, and J. L. Yang, "Graphene nanoribbon as a negative differential resistance device,"Appl. Phys. Lett. 94 (17), 173110 (2009). 10.1063/1.3126451
-
(2009)
Appl. Phys. Lett.
, vol.94
, Issue.17
, pp. 173110
-
-
Ren, H.1
Li, Q.X.2
Luo, Y.3
Yang, J.L.4
-
4
-
-
71949121196
-
Resonant tunneling and negative transconductance in single barrier bilayer graphene structure
-
V. H. Nguyen, A. Bournel, V. L. Nguyen, and P. Dollfus, "Resonant tunneling and negative transconductance in single barrier bilayer graphene structure,"Appl. Phys. Lett 95 (23), 232115 (2009); 10.1063/1.3273376
-
(2009)
Appl. Phys. Lett
, vol.95
, Issue.23
, pp. 232115
-
-
Nguyen, V.H.1
Bournel, A.2
Nguyen, V.L.3
Dollfus, P.4
-
5
-
-
79961037627
-
Giant effect of negative differential conductance in graphene nanoribbon p-n hetero-junctions
-
10.1063/1.3616143
-
V. H. Nguyen, F. Mazzamuto, J. Saint-Martin, A. Bournel, and P. Dollfus, "Giant effect of negative differential conductance in graphene nanoribbon p-n hetero-junctions,"Appl. Phys. Lett. 99 (4), 042105 (2011). 10.1063/1.3616143
-
(2011)
Appl. Phys. Lett.
, vol.99
, Issue.4
, pp. 042105
-
-
Nguyen, V.H.1
Mazzamuto, F.2
Saint-Martin, J.3
Bournel, A.4
Dollfus, P.5
-
6
-
-
0033584805
-
Large on-off ratios and negative differential resistance in a molecular electronic device
-
10.1126/science.286.5444.1550
-
J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, "Large on-off ratios and negative differential resistance in a molecular electronic device,"Science 286, 1550-1552 (1999). 10.1126/science.286.5444.1550
-
(1999)
Science
, vol.286
, pp. 1550-1552
-
-
Chen, J.1
Reed, M.A.2
Rawlett, A.M.3
Tour, J.M.4
-
7
-
-
0346246276
-
First-principles calculation of transport properties of a molecular device
-
10.1103/PhysRevLett.84.979
-
M. Di Ventra, S. T. Pantelides, and N. D. Lang, "First-principles calculation of transport properties of a molecular device,"Phys. Rev. Lett. 84 (5), 979-982 (2000). 10.1103/PhysRevLett.84.979
-
(2000)
Phys. Rev. Lett.
, vol.84
, Issue.5
, pp. 979-982
-
-
Di Ventra, M.1
Pantelides, S.T.2
Lang, N.D.3
-
8
-
-
78650726332
-
60-based electronic devices
-
10.1021/nn101902r
-
60-based electronic devices,"ACS Nano 4 (12), 7205-7210 (2010). 10.1021/nn101902r
-
(2010)
ACS Nano
, vol.4
, Issue.12
, pp. 7205-7210
-
-
Zheng, X.H.1
Lu, W.2
Abtew, T.A.3
Meunier, V.4
Bernholc, J.5
-
9
-
-
14844346251
-
Changes of coupling between the electrodes and the molecule under external bias bring negative differential resistance
-
10.1021/jp046349g
-
X. Q. Shi, X. H. Zheng, Z. X. Dai, Y. Wang, and Z. Zeng, "Changes of coupling between the electrodes and the molecule under external bias bring negative differential resistance,"J. Phys. Chem. B 109 (8), 3334-3339 (2005). 10.1021/jp046349g
-
(2005)
J. Phys. Chem. B
, vol.109
, Issue.8
, pp. 3334-3339
-
-
Shi, X.Q.1
Zheng, X.H.2
Dai, Z.X.3
Wang, Y.4
Zeng, Z.5
-
10
-
-
80051802726
-
Electronic transport properties on V-shaped-notched zigzag graphene nanoribbons junctions
-
10.1016/j.physleta.2011.07.029
-
X. J. Zhang, K. Q. Chen, L. M. Tang, and M. Q. Long, "Electronic transport properties on V-shaped-notched zigzag graphene nanoribbons junctions,"Phys. Lett. A 375 (37), 3319-3324 (2011). 10.1016/j.physleta.2011.07.029
-
(2011)
Phys. Lett. A
, vol.375
, Issue.37
, pp. 3319-3324
-
-
Zhang, X.J.1
Chen, K.Q.2
Tang, L.M.3
Long, M.Q.4
-
11
-
-
78651339649
-
Negative differential resistance in oxidized zigzag graphene nanoribbons
-
10.1039/c0cp00828a
-
M. Wang and C. M. Li, "Negative differential resistance in oxidized zigzag graphene nanoribbons,"Phys. Chem. Chem. Phys. 13 (4), 1413-1418 (2011). 10.1039/c0cp00828a
-
(2011)
Phys. Chem. Chem. Phys.
, vol.13
, Issue.4
, pp. 1413-1418
-
-
Wang, M.1
Li, C.M.2
-
12
-
-
78249265054
-
Transition from insulator to metal induced by hybridized connection of graphene and boron nitride nanoribbons
-
10.1063/1.3515921
-
J. He, K. Q. Chen, Z. Q. Fan, L. M. Tang, and W. P. Hu, "Transition from insulator to metal induced by hybridized connection of graphene and boron nitride nanoribbons,"Appl. Phys. Lett. 97 (19), 193305 (2010). 10.1063/1.3515921
-
(2010)
Appl. Phys. Lett.
, vol.97
, Issue.19
, pp. 193305
-
-
He, J.1
Chen, K.Q.2
Fan, Z.Q.3
Tang, L.M.4
Hu, W.P.5
-
13
-
-
84863116719
-
Edge hydrogenation-induced spin-filtering and rectifying behaviors in the graphene nanoribbon heterojunctions
-
10.1021/jp208248v
-
J. Zeng, K. Q. Chen, J. He, X. J. Zhang, and C. Q. Sun, "Edge hydrogenation-induced spin-filtering and rectifying behaviors in the graphene nanoribbon heterojunctions,"J. Phys. Chem. C 115 (50), 25072-25076 (2011). 10.1021/jp208248v
-
(2011)
J. Phys. Chem. C
, vol.115
, Issue.50
, pp. 25072-25076
-
-
Zeng, J.1
Chen, K.Q.2
He, J.3
Zhang, X.J.4
Sun, C.Q.5
-
14
-
-
65549101628
-
Improving gas sensing properties of graphene by introducing dopants and defects, a first-principles study
-
10.1088/0957-4484/20/18/185504
-
Y. H. Zhang, Y. B. Chen, K. G. Zhou, C. H. Liu, J. Zeng, H. L. Zhang, and Y. Peng, "Improving gas sensing properties of graphene by introducing dopants and defects, a first-principles study,"Nanotechnology 20 (18), 185504 (2009). 10.1088/0957-4484/20/18/185504
-
(2009)
Nanotechnology
, vol.20
, Issue.18
, pp. 185504
-
-
Zhang, Y.H.1
Chen, Y.B.2
Zhou, K.G.3
Liu, C.H.4
Zeng, J.5
Zhang, H.L.6
Peng, Y.7
-
15
-
-
61749087521
-
Chemical functionalization of graphene with defects
-
10.1021/nl802234n
-
D. W. Boukhvalov and M. I. Katsnelson, "Chemical functionalization of graphene with defects,"Nano. Lett. 8 (12), 4373-4379 (2008). 10.1021/nl802234n
-
(2008)
Nano. Lett.
, vol.8
, Issue.12
, pp. 4373-4379
-
-
Boukhvalov, D.W.1
Katsnelson, M.I.2
-
16
-
-
68949092626
-
Tunable band gap and magnetic ordering by adsorption of molecules on graphene
-
10.1103/PhysRevB.80.033404
-
J. Berashevich and T. Chakraborty, "Tunable band gap and magnetic ordering by adsorption of molecules on graphene,"Phys. Rev. B 80 (3), 033404 (2009). 10.1103/PhysRevB.80.033404
-
(2009)
Phys. Rev. B
, vol.80
, Issue.3
, pp. 033404
-
-
Berashevich, J.1
Chakraborty, T.2
-
17
-
-
39649094302
-
Half-metallicity in undoped and boron doped graphene nanoribbons in the presence of semilocal exchange-correlation interactions
-
10.1021/jp710637c
-
S. Dutta and S. K. Pati, "Half-metallicity in undoped and boron doped graphene nanoribbons in the presence of semilocal exchange-correlation interactions,"J. Phys. Chem. B 112 (5), 1333-1335 (2008). 10.1021/jp710637c
-
(2008)
J. Phys. Chem. B
, vol.112
, Issue.5
, pp. 1333-1335
-
-
Dutta, S.1
Pati, S.K.2
-
18
-
-
62549143590
-
Electronic, structural, and transport properties of Ni-doped graphene nanoribbons
-
10.1103/PhysRevB.79.075435
-
V. A. Rigo, T. B. Martins, A. J. R. da Silva, A. Fazzio, and R. H. Miwa, "Electronic, structural, and transport properties of Ni-doped graphene nanoribbons,"Phys. Rev. B 79 (7), 075435 (2009). 10.1103/PhysRevB.79.075435
-
(2009)
Phys. Rev. B
, vol.79
, Issue.7
, pp. 075435
-
-
Rigo, V.A.1
Martins, T.B.2
Da Silva, A.J.R.3
Fazzio, A.4
Miwa, R.H.5
-
19
-
-
79960179267
-
Nitrogen doping-induced rectifying behavior with large rectifying ratio in graphene nanoribbons device
-
10.1063/1.3600067
-
J. Zeng, K. Q. Chen, J. He, Z. Q. Fan, and X. J. Zhang, "Nitrogen doping-induced rectifying behavior with large rectifying ratio in graphene nanoribbons device,"J. Appl. Phys. 109 (12), 124502 (2011). 10.1063/1.3600067
-
(2011)
J. Appl. Phys.
, vol.109
, Issue.12
, pp. 124502
-
-
Zeng, J.1
Chen, K.Q.2
He, J.3
Fan, Z.Q.4
Zhang, X.J.5
-
20
-
-
77749327480
-
Effects of symmetry and Stone-Wales defect on spin-dependent electronic transport in zigzag graphene nanoribbons
-
10.1063/1.3309775
-
Y. Ren and K. Q. Chen, "Effects of symmetry and Stone-Wales defect on spin-dependent electronic transport in zigzag graphene nanoribbons,"J. Appl. Phys. 107 (4), 044514 (2010). 10.1063/1.3309775
-
(2010)
J. Appl. Phys.
, vol.107
, Issue.4
, pp. 044514
-
-
Ren, Y.1
Chen, K.Q.2
-
21
-
-
84863056702
-
Negative differential spin conductance in doped zigzag graphene nanoribbons
-
10.1063/1.3681775
-
T. T. Wu, X. F. Wang, M. X. Zhai, H. Liu, L. P. Zhou, and Y. J. Jiang, "Negative differential spin conductance in doped zigzag graphene nanoribbons,"Appl. Phys. Lett. 100 (5), 052112 (2012). 10.1063/1.3681775
-
(2012)
Appl. Phys. Lett.
, vol.100
, Issue.5
, pp. 052112
-
-
Wu, T.T.1
Wang, X.F.2
Zhai, M.X.3
Liu, H.4
Zhou, L.P.5
Jiang, Y.J.6
-
22
-
-
84892163929
-
Phosphorus-doping-induced rectifying behavior in armchair graphene nanoribbons devices
-
10.1063/1.4861176
-
Y. H. Zhou, D. L. Zhang, J. B. Zhang, C. Ye, and X. S. Miao, "Phosphorus-doping-induced rectifying behavior in armchair graphene nanoribbons devices,"J. Appl. Phys. 115 (1), 013705 (2014). 10.1063/1.4861176
-
(2014)
J. Appl. Phys.
, vol.115
, Issue.1
, pp. 013705
-
-
Zhou, Y.H.1
Zhang, D.L.2
Zhang, J.B.3
Ye, C.4
Miao, X.S.5
-
23
-
-
0037091644
-
Density-functional method for nonequilibrium electron transport
-
10.1103/PhysRevB.65.165401
-
M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, "Density-functional method for nonequilibrium electron transport,"Phys. Rev. B 65 (16), 165401 (2002). 10.1103/PhysRevB.65.165401
-
(2002)
Phys. Rev. B
, vol.65
, Issue.16
, pp. 165401
-
-
Brandbyge, M.1
Mozos, J.L.2
Ordejón, P.3
Taylor, J.4
Stokbro, K.5
-
24
-
-
84866039002
-
Ballistic thermoelectric properties in graphene-nanoribbon-based heterojunctions
-
10.1063/1.4751287
-
C. N. Pan, Z. X. Xie, L. M. Tang, and K. Q. Chen, "Ballistic thermoelectric properties in graphene-nanoribbon-based heterojunctions,"Appl. Phys. Lett. 101 (10), 103115 (2012). 10.1063/1.4751287
-
(2012)
Appl. Phys. Lett.
, vol.101
, Issue.10
, pp. 103115
-
-
Pan, C.N.1
Xie, Z.X.2
Tang, L.M.3
Chen, K.Q.4
-
25
-
-
26144450583
-
Self-interaction correction to density-functional approximations for many-electron systems
-
10.1103/PhysRevB.23.5048
-
J. P. Perdew and A. Zunger, "Self-interaction correction to density-functional approximations for many-electron systems,"Phys. Rev. B 23 (10), 5048-5079 (1981). 10.1103/PhysRevB.23.5048
-
(1981)
Phys. Rev. B
, vol.23
, Issue.10
, pp. 5048-5079
-
-
Perdew, J.P.1
Zunger, A.2
-
26
-
-
8744270531
-
Generalized many-channel conductance formula with application to small rings
-
10.1103/PhysRevB.31.6207
-
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, "Generalized many-channel conductance formula with application to small rings,"Phys. Rev. B 31 (10), 6207-6215 (1985). 10.1103/PhysRevB.31.6207
-
(1985)
Phys. Rev. B
, vol.31
, Issue.10
, pp. 6207-6215
-
-
Büttiker, M.1
Imry, Y.2
Landauer, R.3
Pinhas, S.4
-
27
-
-
33751348065
-
Energy gaps in graphene nanoribbons
-
10.1103/PhysRevLett.97.216803
-
Y. W. Son, M. L. Cohen, and S. G. Louie, "Energy gaps in graphene nanoribbons,"Phys. Rev. Lett. 97 (21), 216803 (2006). 10.1103/PhysRevLett.97.216803
-
(2006)
Phys. Rev. Lett.
, vol.97
, Issue.21
, pp. 216803
-
-
Son, Y.W.1
Cohen, M.L.2
Louie, S.G.3
-
28
-
-
22744436438
-
Effects of intermolecular interaction and molecule-lead couplings on molecular electronic conductance
-
10.1021/jp050650v
-
H. Geng, S. W. Yin, K. Q. Chen, and Z. G. Shuai, "Effects of intermolecular interaction and molecule-lead couplings on molecular electronic conductance,"J. Phys. Chem. B 109 (25), 12304-12308 (2005). 10.1021/jp050650v
-
(2005)
J. Phys. Chem. B
, vol.109
, Issue.25
, pp. 12304-12308
-
-
Geng, H.1
Yin, S.W.2
Chen, K.Q.3
Shuai, Z.G.4
-
29
-
-
36849040427
-
Negative differential resistance induced by intermolecular interaction in a bimolecular device
-
10.1063/1.2822423
-
M. Q. Long, K. Q. Chen, L. L. Wang, B. S. Zou, and Z. G. Shuai, "Negative differential resistance induced by intermolecular interaction in a bimolecular device,"Appl. Phys. Lett. 91 (23), 233512 (2007). 10.1063/1.2822423
-
(2007)
Appl. Phys. Lett.
, vol.91
, Issue.23
, pp. 233512
-
-
Long, M.Q.1
Chen, K.Q.2
Wang, L.L.3
Zou, B.S.4
Shuai, Z.G.5
|