메뉴 건너뛰기




Volumn 33, Issue , 2014, Pages 122-130

Efficient low-rank stochastic gradient descent methods for solving semidefinite programs

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMMUNICATION CHANNELS (INFORMATION THEORY); ITERATIVE METHODS; OPTIMIZATION; TIME VARYING NETWORKS;

EID: 84955457109     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (9)

References (34)
  • 1
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, "Robust stochastic approximation approach to stochastic programming," SIAM J. on Optimization, vol. 19, pp. 1574-1609, 2009.
    • (2009) SIAM J. on Optimization , vol.19 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 2
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Q. Weinberger and L. K. Saul, "Distance metric learning for large margin nearest neighbor classification," J. Mach. Learn. Res., vol. 10, pp. 207-244, 2009.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 4
    • 84898932317 scopus 로고    scopus 로고
    • Maximum margin matrix factorization
    • S. Nathan, D. M. R. Jason, and S. J. Tommi, "Maximum margin matrix factorization," in NIPS, 2005.
    • (2005) NIPS
    • Nathan, S.1    Jason, D.M.R.2    Tommi, S.J.3
  • 5
    • 84907044969 scopus 로고    scopus 로고
    • A convex formulation for learning task relationships in multi-task learning
    • Y. Zhang and Y. Dit-Yan, "A convex formulation for learning task relationships in multi-task learning," in UAI, 2010.
    • (2010) UAI
    • Zhang, Y.1    Dit-Yan, Y.2
  • 6
    • 84875472724 scopus 로고    scopus 로고
    • A convex formulation for learning a shared predictive structure from multiple tasks
    • J. Chen, L. Tang, J. Liu, and J. Ye, "A convex formulation for learning a shared predictive structure from multiple tasks," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, pp. 1025-1038, 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , pp. 1025-1038
    • Chen, J.1    Tang, L.2    Liu, J.3    Ye, J.4
  • 7
    • 34548514458 scopus 로고    scopus 로고
    • A direct formulation for sparse PCA using semidefinite programming
    • A. d'Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G. Lanckriet, "A direct formulation for sparse pca using semidefinite programming," SIAM Rev., vol. 49, pp. 434-448, 2007.
    • (2007) SIAM Rev. , vol.49 , pp. 434-448
    • D'Aspremont, A.1    El Ghaoui, L.2    Jordan, M.I.3    Lanckriet, G.R.G.4
  • 8
    • 84940744690 scopus 로고    scopus 로고
    • Constrained metric learning via distance gap maximization
    • W. Liu, X. Tian, D. Tao, and J. Liu, "Constrained metric learning via distance gap maximization." in AAAI, 2010.
    • (2010) AAAI
    • Liu, W.1    Tian, X.2    Tao, D.3    Liu, J.4
  • 9
    • 77956374577 scopus 로고    scopus 로고
    • Semi-supervised distance metric learning for collaborative image retrieval and clustering
    • S. C. Hoi, W. Liu, and S.-F. Chang, "Semi-supervised distance metric learning for collaborative image retrieval and clustering," ACM Trans. Multimedia Comput. Commun. Appl., vol. 6, pp. 18-1-18:26, 2010.
    • (2010) ACM Trans. Multimedia Comput. Commun. Appl. , vol.6 , pp. 1801-1826
    • Hoi, S.C.1    Liu, W.2    Chang, S.-F.3
  • 10
    • 84877725845 scopus 로고    scopus 로고
    • Stochastic gradient descent with only one projection
    • M. Mahdavi, T. Yang, R. Jin, S. Zhu, and J. Yi, "Stochastic gradient descent with only one projection," in NIPS, 2012.
    • (2012) NIPS
    • Mahdavi, M.1    Yang, T.2    Jin, R.3    Zhu, S.4    Yi, J.5
  • 11
    • 84955484099 scopus 로고    scopus 로고
    • Stochastic gradient descent with only one projection
    • E. Hazan and S. Kale, "Stochastic gradient descent with only one projection," in ICML, 2012.
    • (2012) ICML
    • Hazan, E.1    Kale, S.2
  • 12
    • 0001971618 scopus 로고
    • An algorithm for quadratic programming naval research logistics
    • M. Frank and P. Wolfe, "An algorithm for quadratic programming. naval research logistics," Naval Res. Logistics, vol. 3, pp. 95-110, 1956.
    • (1956) Naval Res. Logistics , vol.3 , pp. 95-110
    • Frank, M.1    Wolfe, P.2
  • 15
    • 14344262273 scopus 로고    scopus 로고
    • Online and batch learning of pseudo-metrics
    • S. Shalev-Shwartz, Y. Singer, and A. Y. Ng, "Online and batch learning of pseudo-metrics," in ICML, 2004.
    • (2004) ICML
    • Shalev-Shwartz, S.1    Singer, Y.2    Ng, A.Y.3
  • 16
    • 84858775391 scopus 로고    scopus 로고
    • Online metric learning and fast similarity search
    • P. Jain, B. Kulis, I. S. Dhillon, and K. Grauman, "Online metric learning and fast similarity search," in NIPS, 2008, pp. 761-768.
    • (2008) NIPS , pp. 761-768
    • Jain, P.1    Kulis, B.2    Dhillon, I.S.3    Grauman, K.4
  • 17
    • 84867135292 scopus 로고    scopus 로고
    • Efficient and practical stochastic subgradient descent for nuclear norm regularization
    • H. Avron, S. Kale, S. Kasiviswanathan, and V. Sindhwani, "Efficient and practical stochastic subgradient descent for nuclear norm regularization," in ICML, 2012.
    • (2012) ICML
    • Avron, H.1    Kale, S.2    Kasiviswanathan, S.3    Sindhwani, V.4
  • 18
    • 33748601484 scopus 로고    scopus 로고
    • Fast algorithms for approximate semide.nite programming using the multiplicative weights update method
    • S. Arora, E. Hazan, and S. Kale, "Fast algorithms for approximate semide.nite programming using the multiplicative weights update method," in FOCS, 2005.
    • (2005) FOCS
    • Arora, S.1    Hazan, E.2    Kale, S.3
  • 19
    • 84867129398 scopus 로고    scopus 로고
    • Sparse approximate solutions to semidefinite programs
    • E. Hazan, "Sparse approximate solutions to semidefinite programs," in LATIN, 2008.
    • (2008) Latin
    • Hazan, E.1
  • 20
    • 85162339284 scopus 로고    scopus 로고
    • Random conic pursuit for semidefinite programming
    • A. Kleiner, A. Rahimi, and M. I. Jordan, "Random conic pursuit for semidefinite programming," in NIPS, 2010.
    • (2010) NIPS
    • Kleiner, A.1    Rahimi, A.2    Jordan, M.I.3
  • 21
    • 84867122544 scopus 로고    scopus 로고
    • A hybrid algorithm for convex semidefinite optimization
    • S. Laue, "A hybrid algorithm for convex semidefinite optimization," in ICML, 2012.
    • (2012) ICML
    • Laue, S.1
  • 22
    • 85162455623 scopus 로고    scopus 로고
    • Approximating semidefinite programs in sublinear time
    • D. Garber and E. Hazan, "Approximating semidefinite programs in sublinear time," in NIPS, 2011.
    • (2011) NIPS
    • Garber, D.1    Hazan, E.2
  • 23
    • 33947732413 scopus 로고    scopus 로고
    • Smoothing technique and its applications in semidefinite optimization
    • Y. Nesterov, "Smoothing technique and its applications in semidefinite optimization," Math. Program., pp. 245-259, 2007.
    • (2007) Math. Program , pp. 245-259
    • Nesterov, Y.1
  • 24
    • 84857513492 scopus 로고    scopus 로고
    • Distance metric learning with eigenvalue optimization
    • Y. Ying and P. Li, "Distance metric learning with eigenvalue optimization," J. Mach. Learn. Res., pp. 1-26, 2012.
    • (2012) J. Mach. Learn. Res. , pp. 1-26
    • Ying, Y.1    Li, P.2
  • 25
    • 56449127513 scopus 로고    scopus 로고
    • Fast solvers and efficient implementations for distance metric learning
    • K. Weinberger and L. Saul, "Fast solvers and efficient implementations for distance metric learning," in ICML, 2008.
    • (2008) ICML
    • Weinberger, K.1    Saul, L.2
  • 26
    • 77949527718 scopus 로고    scopus 로고
    • Generalized power method for sparse principal component analysis
    • M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre, "Generalized power method for sparse principal component analysis," J. Mach. Learn. Res., vol. 11, pp. 517-553, 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 517-553
    • Journée, M.1    Nesterov, Y.2    Richtárik, P.3    Sepulchre, R.4
  • 27
    • 48849086355 scopus 로고    scopus 로고
    • Optimal solutions for sparse principal component analysis
    • A. d'Aspremont, F. Bach, and L. E. Ghaoui, "Optimal solutions for sparse principal component analysis," J. Mach. Learn. Res., vol. 9, pp. 1269-1294, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1269-1294
    • D'Aspremont, A.1    Bach, F.2    Ghaoui, L.E.3
  • 29
    • 79952297247 scopus 로고    scopus 로고
    • Alternating direction augmented lagrangian methods for semidefinite programming
    • Z. Wen, D. Goldfarb, and W. Yin, "Alternating direction augmented lagrangian methods for semidefinite programming," Mathematical Programming Computation, 2010.
    • (2010) Mathematical Programming Computation
    • Wen, Z.1    Goldfarb, D.2    Yin, W.3
  • 30
    • 84891310987 scopus 로고    scopus 로고
    • Stochastic alternating direction method of multipliers
    • H. Ouyang, N. He, L. Tran, and A. G. Gray, "Stochastic alternating direction method of multipliers," in ICML, 2013.
    • (2013) ICML
    • Ouyang, H.1    He, N.2    Tran, L.3    Gray, A.G.4
  • 31
    • 84919898301 scopus 로고    scopus 로고
    • Stochastic optimization for machine learning
    • N. Srebro and A. Tewari, "Stochastic optimization for machine learning," in ICML Tutorial, 2010.
    • (2010) ICML Tutorial
    • Srebro, N.1    Tewari, A.2
  • 32


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.