메뉴 건너뛰기




Volumn 1, Issue , 2015, Pages 377-382

Hybrid ensemble learning approach for generation of classification rules

Author keywords

Data mining; Ensemble learning; If then rules; Inductive learning; Machine learning; Rule based classification

Indexed keywords

ARTIFICIAL INTELLIGENCE; CYBERNETICS; DATA HANDLING; DATA MINING; DECISION TREES; LEARNING SYSTEMS;

EID: 84955347120     PISSN: 2160133X     EISSN: 21601348     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLC.2015.7340951     Document Type: Conference Paper
Times cited : (11)

References (15)
  • 2
    • 0033075882 scopus 로고    scopus 로고
    • Separate-and-Conquer rule learning
    • J. Furnkranz, Separate-and-Conquer rule learning, Artificial Intelligence Review, Vol. 13, pp. 3-54,1999.
    • (1999) Artificial Intelligence Review , vol.13 , pp. 3-54
    • Furnkranz, J.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, Random Forests. Machine Learning, Vol. 45, No. l,pp. 5-32,2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 85132948047 scopus 로고    scopus 로고
    • Collaborative decision making by ensemble rule based classification systems. In: W. Pedrycz and s. M. Chen, granular computing and decision making
    • Springer
    • H. Liu and A. Gegov, Collaborative Decision Making by Ensemble Rule Based Classification Systems. In: W. Pedrycz and S. M. Chen, Granular Computing and Decision Making, Studies in Big Data, Vol. 10, pp. 245-264, Springer, 2015.
    • (2015) Studies in Big Data , vol.10 , pp. 245-264
    • Liu, H.1    Gegov, A.2
  • 11
    • 1242308945 scopus 로고    scopus 로고
    • Selecting the right objective measure for association analysis
    • P. N. Tan, V. Kumar and J. Srivastava, Selecting the right objective measure for association analysis. Information Systems, Vol. 29, pp. 293-313,2004.
    • (2004) Information Systems , vol.29 , pp. 293-313
    • Tan, P.N.1    Kumar, V.2    Srivastava, J.3
  • 12
    • 33749319347 scopus 로고    scopus 로고
    • Interestingness measures for data mining: A survey
    • L. Geng and H. J. Hamilton, Interestingness measures for data mining: A survey. ACM Computing Surveys, Vol. 38, No. 3,2006.
    • (2006) ACM Computing Surveys , vol.38 , Issue.3
    • Geng, L.1    Hamilton, H.J.2
  • 13
    • 84886567160 scopus 로고    scopus 로고
    • Irvine, CA: University of California. School of Information and Computer Science
    • M. Lichman, UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science, 2013.
    • (2013) UCI Machine Learning Repository
    • Lichman, M.1
  • 15
    • 85051260143 scopus 로고    scopus 로고
    • Unified framework for construction of rule based classification systems. In: W. Pedrycz and S. M. Chen, Information Granularity, Big Data and Computational Intelligence
    • Springer
    • H. Liu, A. Gegov and F. Stahl, Unified framework for construction of rule based classification systems. In: W. Pedrycz and S. M. Chen, Information Granularity, Big Data and Computational Intelligence, Studies in Big Data, Vol. 8, pp. 209-230, Springer, 2015.
    • (2015) Studies in Big Data , vol.8 , pp. 209-230
    • Liu, H.1    Gegov, A.2    Stahl, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.