메뉴 건너뛰기




Volumn 51, Issue , 2016, Pages 151-160

Clustering using PK-D: A connectivity and density dissimilarity

Author keywords

Clustering; Dimensionality reduction

Indexed keywords

CLUSTER ANALYSIS; DATA VISUALIZATION; GENE EXPRESSION; MESSAGE PASSING; VECTOR SPACES;

EID: 84955276228     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2015.12.037     Document Type: Article
Times cited : (7)

References (43)
  • 2
    • 84955299706 scopus 로고
    • AT&T Lab. Cambridge. Accessed June 2015
    • AT&T Labs The Olivetti faces dataset 1992 AT&T Lab. Cambridge http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html. Accessed June 2015
    • (1992) The Olivetti Faces Dataset
  • 3
    • 78650792692 scopus 로고    scopus 로고
    • Clustering gene expression data with a penalized graph-based metric
    • Bayá A.E., and Granitto P.M. Clustering gene expression data with a penalized graph-based metric BMC Bioinformatics 12 1 2011 2 10.1186/1471-2105-12-2
    • (2011) BMC Bioinformatics , vol.12 , Issue.1 , pp. 2
    • Bayá, A.E.1    Granitto, P.M.2
  • 5
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation Neural Computation 15 6 2003 1373 1396
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 6
    • 84955264293 scopus 로고    scopus 로고
    • Broad Institute (1999). Accessed June
    • Broad Institute (1999). Broad Institute Cancer Datasets. http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi. Accessed June 2015.
    • (2015) Broad Institute Cancer Datasets
  • 7
    • 84933059433 scopus 로고    scopus 로고
    • A new clustering algorithm based on near neighbor influence
    • Chen X. A new clustering algorithm based on near neighbor influence Expert Systems with Applications 42 21 2015 7746 7758 http://dx.doi.org/10.1016/j.eswa.2015.05.007
    • (2015) Expert Systems with Applications , vol.42 , Issue.21 , pp. 7746-7758
    • Chen, X.1
  • 13
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency versus interpretability of classifications
    • Forgy E.W. Cluster analysis of multivariate data: Efficiency versus interpretability of classifications Biometrics 21 1965 768 769
    • (1965) Biometrics , vol.21 , pp. 768-769
    • Forgy, E.W.1
  • 17
    • 84907494962 scopus 로고    scopus 로고
    • A density and connectivity based decision rule for pattern classification
    • Inkaya T. A density and connectivity based decision rule for pattern classification Expert Systems with Applications 42 2 2015 906 912 http://dx.doi.org/10.1016/j.eswa.2014.08.027
    • (2015) Expert Systems with Applications , vol.42 , Issue.2 , pp. 906-912
    • Inkaya, T.1
  • 18
    • 84942333236 scopus 로고    scopus 로고
    • A parameter-free similarity graph for spectral clustering
    • Inkaya T. A parameter-free similarity graph for spectral clustering Expert Systems with Applications 42 24 2015 9489 9498 10.1016/j.eswa.2015.07.074
    • (2015) Expert Systems with Applications , vol.42 , Issue.24 , pp. 9489-9498
    • Inkaya, T.1
  • 22
    • 0037399130 scopus 로고    scopus 로고
    • Spectral biclustering of microarray data: Coclustering genes and conditions
    • Kluger Y., Basri R., Chang J.T., and Gerstein M. Spectral biclustering of microarray data: Coclustering genes and conditions Genome Research 13 4 2003 703 716
    • (2003) Genome Research , vol.13 , Issue.4 , pp. 703-716
    • Kluger, Y.1    Basri, R.2    Chang, J.T.3    Gerstein, M.4
  • 25
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe D.G. Distinctive image features from scale-invariant keypoints International Journal of Computer Vision 60 2 2004 91 110 10.1023/B:VISI.0000029664.99615.94
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 26
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • Luxburg U. A tutorial on spectral clustering Statistics and Computing 17 4 2007 395 416 10.1007/s11222-007-9033-z
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Luxburg, U.1
  • 28
    • 0004255908 scopus 로고    scopus 로고
    • 1st ed. McGraw-Hill, Inc New York, NY, USA
    • Mitchell T.M. Machine learning 1st ed. 1997 McGraw-Hill, Inc New York, NY, USA
    • (1997) Machine Learning
    • Mitchell, T.M.1
  • 29
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • Monti S., Tamayo P., Mesirov J., and Golub T. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data Machine Learning 52 1-2 2003 91 118
    • (2003) Machine Learning , vol.52 , Issue.1-2 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 35
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S., and Saul L. Nonlinear dimensionality reduction by locally linear embedding Science 290 5500 2000 2323 2326
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 38
    • 84874651427 scopus 로고    scopus 로고
    • A comparative study of dimensionality reduction techniques to enhance trace clustering performances
    • Song M., Yang H., Siadat S., and Pechenizkiy M. A comparative study of dimensionality reduction techniques to enhance trace clustering performances Expert Systems with Applications 40 9 2013 3722 3737 http://dx.doi.org/10.1016/j.eswa.2012.12.078
    • (2013) Expert Systems with Applications , vol.40 , Issue.9 , pp. 3722-3737
    • Song, M.1    Yang, H.2    Siadat, S.3    Pechenizkiy, M.4
  • 39
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J., De Silva V., and Langford J. A global geometric framework for nonlinear dimensionality reduction Science 290 5500 2000 2319 2323
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    De Silva, V.2    Langford, J.3
  • 41
    • 0036165146 scopus 로고    scopus 로고
    • On a connection between kernel PCA and metric multidimensional scaling
    • Williams C. On a connection between kernel PCA and metric multidimensional scaling Machine Learning 46 1-3 2002 11 19
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 11-19
    • Williams, C.1
  • 43
    • 84904394351 scopus 로고    scopus 로고
    • Ricci flow embedding for rectifying non-Euclidean dissimilarity data
    • Xu W., Hancock E., and Wilson R. Ricci flow embedding for rectifying non-Euclidean dissimilarity data Pattern Recognition 47 11 2014 3709 3725
    • (2014) Pattern Recognition , vol.47 , Issue.11 , pp. 3709-3725
    • Xu, W.1    Hancock, E.2    Wilson, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.