메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Machine learning bandgaps of double perovskites

Author keywords

[No Author keywords available]

Indexed keywords

MACHINE LEARNING; MODEL; PREDICTION; SPECIES;

EID: 84955239430     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep19375     Document Type: Article
Times cited : (420)

References (59)
  • 1
    • 84875458397 scopus 로고    scopus 로고
    • The high-throughput highway to computational materials design
    • Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191-201 (2013).
    • (2013) Nat. Mater. , vol.12 , pp. 191-201
    • Curtarolo, S.1
  • 2
    • 84885144755 scopus 로고    scopus 로고
    • Accelerating materials property predictions using machine learning
    • Pilania, G., Wang, C., Jiang, X., Rajasekaran, S. & Ramprasad, R. Accelerating materials property predictions using machine learning. Sci. rep. 3, 2810 (2013).
    • (2013) Sci. Rep. , vol.3 , pp. 2810
    • Pilania, G.1    Wang, C.2    Jiang, X.3    Rajasekaran, S.4    Ramprasad, R.5
  • 3
    • 84908046909 scopus 로고    scopus 로고
    • Rational design of all organic polymer dielectrics
    • Sharma, V. et al. Rational design of all organic polymer dielectrics. Nat. comm. 5, 4845 (2014).
    • (2014) Nat. Comm. , vol.5 , pp. 4845
    • Sharma, V.1
  • 4
    • 79956067241 scopus 로고    scopus 로고
    • Recharging lithium battery research with first-principles methods
    • Ceder, G., Hauthier, G., Jain, A. & Ong, S. P. Recharging lithium battery research with first-principles methods. Mater. Res. Soc. Bull. 36, 185-191 (2011).
    • (2011) Mater. Res. Soc. Bull. , vol.36 , pp. 185-191
    • Ceder, G.1    Hauthier, G.2    Jain, A.3    Ong, S.P.4
  • 5
    • 84858989444 scopus 로고    scopus 로고
    • AFLOWLIB.ORG: AFLOWLIB. ORG: A distributed materials properties repository from high-throughput ab initio calculations
    • Curtarolo, S. et al. AFLOWLIB.ORG: AFLOWLIB. ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227 (2012).
    • (2012) Comput. Mater. Sci. , vol.58 , pp. 227
    • Curtarolo, S.1
  • 7
    • 84903166211 scopus 로고    scopus 로고
    • (Documentation) and https://cmr.fysik.dtu.dk/(accessed: 15th October 2015
    • Computational Materials Repository https://wiki.fysik.dtu.dk/cmr/(Documentation) and https://cmr.fysik.dtu.dk/(accessed: 15th October 2015).
    • Computational Materials Repository
  • 8
    • 84858768961 scopus 로고    scopus 로고
    • Materials scientists look to a data-intensive future
    • Service, R. F. Materials scientists look to a data-intensive future. Science 335, 1434-1435 (2012).
    • (2012) Science , vol.335 , pp. 1434-1435
    • Service, R.F.1
  • 10
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbidge, R., Trotter, M., Buxton, B. & Holden, S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Computers & chemistry 26, 5-14 (2001).
    • (2001) Computers & Chemistry , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 11
    • 85058964822 scopus 로고    scopus 로고
    • Quiz-playing computer system could revolutionize research
    • Available at: Accessed: 23rd November 2015
    • Jones, N. Quiz-playing computer system could revolutionize research. Nature News (2011), Available at: http://dx.doi.org/10.1038/news.2011.95. (Accessed: 23rd November 2015).
    • (2011) Nature News
    • Jones, N.1
  • 12
    • 77956503076 scopus 로고    scopus 로고
    • Time to automate identification
    • MacLeod, N., Benfield, M. & Culverhouse, P. Time to automate identification. Nature 467, 154-155 (2010).
    • (2010) Nature , vol.467 , pp. 154-155
    • MacLeod, N.1    Benfield, M.2    Culverhouse, P.3
  • 13
    • 84865627286 scopus 로고    scopus 로고
    • Machines that Think for Themselves
    • Abu-Mostafa, Y. S. Machines that Think for Themselves. Sci Am 307, 78-81 (2012).
    • (2012) Sci Am , vol.307 , pp. 78-81
    • Abu-Mostafa, Y.S.1
  • 15
    • 84959532241 scopus 로고    scopus 로고
    • Machine learning in materials science: Recent progress and emerging applications
    • Accepted for publication
    • Mueller, T., Kusne, A. G. & Ramprasad, R. Machine learning in materials science: Recent progress and emerging applications. Rev. Comput. Chem. (Accepted for publication).
    • Rev. Comput. Chem.
    • Mueller, T.1    Kusne, A.G.2    Ramprasad, R.3
  • 17
    • 84856512353 scopus 로고    scopus 로고
    • Fast and accurate modeling of molecular atomization energies with machine learning
    • Rupp, M., Tkatchenko, A., Muller, K.-R. & von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
    • (2012) Phys. Rev. Lett. , vol.108 , pp. 058301
    • Rupp, M.1    Tkatchenko, A.2    Muller, K.-R.3    Von Lilienfeld, O.A.4
  • 18
    • 84937829970 scopus 로고    scopus 로고
    • Accelerated materials property predictions and design using motif-based fingerprints
    • Huan, T. D., Mannodi-Kanakkithodi, A. & Ramprasad, R. Accelerated materials property predictions and design using motif-based fingerprints, Phys. Rev. B 92, 014106 (2015).
    • (2015) Phys. Rev. B , vol.92 , pp. 014106
    • Huan, T.D.1    Mannodi-Kanakkithodi, A.2    Ramprasad, R.3
  • 19
    • 84901440781 scopus 로고    scopus 로고
    • How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
    • Schütt, K. T. et al. How to represent crystal structures for machine learning: Towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).
    • (2014) Phys. Rev. B , vol.89 , pp. 205118
    • Schütt, K.T.1
  • 20
    • 84897840142 scopus 로고    scopus 로고
    • Combinatorial screening for new materials in unconstrained composition space with machine learning
    • Meredig, B. et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89 094104 (2014).
    • (2014) Phys. Rev. B , vol.89 , pp. 094104
    • Meredig, B.1
  • 21
    • 84936846648 scopus 로고    scopus 로고
    • Crystal Structure Representations for Machine Learning Models of Formation Energies
    • Faber, F., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Crystal Structure Representations for Machine Learning Models of Formation Energies. Int. J. Quantum. Chem. 115, 1094-1101(2015).
    • (2015) Int. J. Quantum. Chem. , vol.115 , pp. 1094-1101
    • Faber, F.1    Lindmaa, A.2    Von Lilienfeld, O.A.3    Armiento, R.4
  • 23
    • 84862891798 scopus 로고    scopus 로고
    • Optimizing transition states via kernel-based machine learning
    • Pozun, Z. et al. Optimizing transition states via kernel-based machine learning. Chem. Phys. 136, 174101 (2012).
    • (2012) Chem. Phys. , vol.136 , pp. 174101
    • Pozun, Z.1
  • 24
    • 79953856961 scopus 로고    scopus 로고
    • Atom-centered symmetry functions for constructing high-dimensional neural network potentials
    • Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134, 074106 (2011).
    • (2011) J. Chem. Phys. , vol.134 , pp. 074106
    • Behler, J.1
  • 25
    • 84936800621 scopus 로고    scopus 로고
    • Adaptive machine learning framework to accelerate ab initio molecular dynamics Int
    • Botu, V. & Ramprasad, R. Adaptive machine learning framework to accelerate ab initio molecular dynamics, Int. J. Quantum Chem. 115, 1074-1083 (2015).
    • (2015) J. Quantum Chem. , vol.115 , pp. 1074-1083
    • Botu, V.1    Ramprasad, R.2
  • 26
    • 84934783136 scopus 로고    scopus 로고
    • Structure classification and melting temperature prediction in octet AB solids via machine learning
    • Pilania, G., Gubernatis, J. E. & Lookman, T. Structure classification and melting temperature prediction in octet AB solids via machine learning. Phys. Rev. B 91, 214302 (2015).
    • (2015) Phys. Rev. B , vol.91 , pp. 214302
    • Pilania, G.1    Gubernatis, J.E.2    Lookman, T.3
  • 28
    • 84943229496 scopus 로고    scopus 로고
    • Predicting the formability of ABO3 perovskite solids: A machine learning study
    • Pilania, G., Balachandran, P. V., Gubernatis, J. E. & Lookman, T. Predicting the formability of ABO3 perovskite solids: A machine learning study. Acta Cryst. B 71, 507-513 (2015).
    • (2015) Acta Cryst. B , vol.71 , pp. 507-513
    • Pilania, G.1    Balachandran, P.V.2    Gubernatis, J.E.3    Lookman, T.4
  • 31
    • 84889259535 scopus 로고    scopus 로고
    • Informatics-aided bandgap engineering for solar materials
    • P., Dey et al. Informatics-aided bandgap engineering for solar materials. Com. Mat. Sci. 83, 185-195 (2014).
    • (2014) Com. Mat. Sci. , vol.83 , pp. 185-195
    • Dey, P.1
  • 33
    • 79960265735 scopus 로고    scopus 로고
    • High-throughput combinatorial database of electronic band structures for inorganic scintillator materials
    • Setyawan, W., Gaume, R. M., Lam, S., Feigelson, R. S. & Curtarolo, S. High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. ACS Comb. Sci. 13, 382-390 (2011).
    • (2011) ACS Comb. Sci. , vol.13 , pp. 382-390
    • Setyawan, W.1    Gaume, R.M.2    Lam, S.3    Feigelson, R.S.4    Curtarolo, S.5
  • 34
    • 80052346613 scopus 로고    scopus 로고
    • Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics
    • Olivares-Amaya, R. et al. Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy Environ. Sci. 4, 4849 (2011).
    • (2011) Energy Environ. Sci. , vol.4 , pp. 4849
    • Olivares-Amaya, R.1
  • 35
    • 85013980731 scopus 로고    scopus 로고
    • (Eds Nilsson, A., Pettersson, L. G. M. & Norskov, J. K.) Elsevier Amsterdam The Netherlands
    • Chemical Bonding at Surfaces and Interfaces (Eds Nilsson, A., Pettersson, L. G. M. & Norskov, J. K.) (Elsevier, Amsterdam, The Netherlands, 2008).
    • (2008) Chemical Bonding at Surfaces and Interfaces
  • 36
    • 36149016819 scopus 로고
    • New method for calculating the one-particle Green's function with application to the electron-gas problem
    • Hedin, L. New method for calculating the one-particle Green's function with application to the electron-gas problem. Phys. Rev. 139 A796 (1965).
    • (1965) Phys. Rev. , vol.139 A , pp. 796
    • Hedin, L.1
  • 37
    • 34547139312 scopus 로고    scopus 로고
    • Hybrid functionals based on a screened Coulomb potential
    • Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 124, 219906 (2006).
    • (2006) J. Chem. Phys. , vol.124 , pp. 219906
    • Heyd, J.1    Scuseria, G.E.2    Ernzerhof, M.3
  • 38
    • 84856763665 scopus 로고    scopus 로고
    • Computational screening of perovskite metal oxides for optimal solar light capture
    • Castelli, I. E. et al. Computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ. Sci. 5, 5814 (2012).
    • (2012) Energy Environ. Sci. , vol.5 , pp. 5814
    • Castelli, I.E.1
  • 39
    • 84900303155 scopus 로고    scopus 로고
    • Bandgap engineering of double perovskites for one-and two-photon water splitting
    • Castelli, I. E., Thygesen, K. S. & Jacobsen, K. W. Bandgap engineering of double perovskites for one-and two-photon water splitting. MRS Proceedings 1523,121523-0706 (2013), doi: 10.1557/opl.2013.450.
    • (2013) MRS Proceedings , vol.1523 , pp. 121523-130706
    • Castelli, I.E.1    Thygesen, K.S.2    Jacobsen, K.W.3
  • 42
    • 15444377222 scopus 로고    scopus 로고
    • Real-space grid implementation of the projector augmented wave method
    • Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 35109 (2005).
    • (2005) Phys. Rev. B , vol.71 , pp. 35109
    • Mortensen, J.J.1    Hansen, L.B.2    Jacobsen, K.W.3
  • 44
    • 77957666308 scopus 로고    scopus 로고
    • Kohn-Sham potential with discontinuity for band gap materials
    • Kuisma, M., Ojanen, J., Enkovaara, J. & Rantala, T. T. Kohn-Sham potential with discontinuity for band gap materials. Phys. Rev. B 82, 115106 (2010).
    • (2010) Phys. Rev. B , vol.82 , pp. 115106
    • Kuisma, M.1    Ojanen, J.2    Enkovaara, J.3    Rantala, T.T.4
  • 45
    • 0001847092 scopus 로고
    • Optimized effective atomic central potential
    • Talman, J. D. & Shadwick, W. F. Optimized effective atomic central potential. Phys. Rev. A 14, 36 (1976).
    • (1976) Phys. Rev. A , vol.14 , pp. 36
    • Talman, J.D.1    Shadwick, W.F.2
  • 46
    • 84921444588 scopus 로고    scopus 로고
    • New light-harvesting materials using accurate and efficient bandgap calculations
    • Castelli, I. E. et al. New light-harvesting materials using accurate and efficient bandgap calculations. Adv. Energy Mater. 5, 1400915 (2015).
    • (2015) Adv. Energy Mater. , vol.5 , pp. 1400915
    • Castelli, I.E.1
  • 47
    • 84896774397 scopus 로고    scopus 로고
    • Informatics guided discovery of surface structure-chemistry relationships in catalytic nanoparticles
    • Andriotis, A. N. et al. Informatics guided discovery of surface structure-chemistry relationships in catalytic nanoparticles. J. Chem. Phys. 140, 094705 (2014).
    • (2014) J. Chem. Phys. , vol.140 , pp. 094705
    • Andriotis, A.N.1
  • 48
    • 84902126520 scopus 로고    scopus 로고
    • Data mining for materials design: A computational study of single molecule magnet
    • Dam, H. C., Pham, T. L., Ho, T. B., Nguyen, A. T. & Nguyen, V. C. Data mining for materials design: A computational study of single molecule magnet. J. Chem. Phys. 140, 044101 (2014).
    • (2014) J. Chem. Phys. , vol.140 , pp. 044101
    • Dam, H.C.1    Pham, T.L.2    Ho, T.B.3    Nguyen, A.T.4    Nguyen, V.C.5
  • 49
    • 5244364312 scopus 로고    scopus 로고
    • The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding
    • Brown, R. D. & Martin, Y. C. The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J. Chem. Inf. Comput. Sci. 37, 1 (1997).
    • (1997) J. Chem. Inf. Comput. Sci. , vol.37 , pp. 1
    • Brown, R.D.1    Martin, Y.C.2
  • 50
    • 0001052051 scopus 로고
    • Systematization of the stable crystal structure of all AB-type binary compounds
    • Zunger, A. Systematization of the stable crystal structure of all AB-type binary compounds. Phys. Rev. B 22, 5839 (1980).
    • (1980) Phys. Rev. B , vol.22 , pp. 5839
    • Zunger, A.1
  • 52
    • 84872979901 scopus 로고    scopus 로고
    • Compressive sensing as a paradigm for building physics models
    • Nelson, L. J., Hart, G. L., Zhou, F. & Ozoliš, V. Compressive sensing as a paradigm for building physics models. Phys. Rev. B 87, 035125 (2013).
    • (2013) Phys. Rev. B , vol.87 , pp. 035125
    • Nelson, L.J.1    Hart, G.L.2    Zhou, F.3    Ozoliš, V.4
  • 55
    • 84949644714 scopus 로고    scopus 로고
    • Transferable atomic multipole machine learning models for small organic molecules
    • Bereau, T., Andrienko, D. & von Lilienfeld, O. A. Transferable atomic multipole machine learning models for small organic molecules. J. Chem. Theory Comput. 11, 3225-3233 (2015).
    • (2015) J. Chem. Theory Comput. , vol.11 , pp. 3225-3233
    • Bereau, T.1    Andrienko, D.2    Von Lilienfeld, O.A.3
  • 56
    • 84882415695 scopus 로고    scopus 로고
    • Assessment and validation of machine learning methods for predicting molecular atomization energies
    • Hansen, K. et al. Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9, 3404 (2013).
    • (2013) J. Chem. Theory Comput. , vol.9 , pp. 3404
    • Hansen, K.1
  • 57
    • 84902578941 scopus 로고    scopus 로고
    • Modeling electronic quantum transport with machine learning
    • Lopez-Bezanilla, A. & von Lilienfeld, O. A. Modeling electronic quantum transport with machine learning. Phys. Rev. B 89, 235411 (2014).
    • (2014) Phys. Rev. B , vol.89 , pp. 235411
    • Lopez-Bezanilla, A.1    Von Lilienfeld, O.A.2
  • 58
    • 4243943295 scopus 로고    scopus 로고
    • Generalized gradient approximation made simple
    • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
    • (1996) Phys. Rev. Lett. , vol.77 , pp. 3865
    • Perdew, J.P.1    Burke, K.2    Ernzerhof, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.