-
1
-
-
84875458397
-
The high-throughput highway to computational materials design
-
Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191-201 (2013).
-
(2013)
Nat. Mater.
, vol.12
, pp. 191-201
-
-
Curtarolo, S.1
-
2
-
-
84885144755
-
Accelerating materials property predictions using machine learning
-
Pilania, G., Wang, C., Jiang, X., Rajasekaran, S. & Ramprasad, R. Accelerating materials property predictions using machine learning. Sci. rep. 3, 2810 (2013).
-
(2013)
Sci. Rep.
, vol.3
, pp. 2810
-
-
Pilania, G.1
Wang, C.2
Jiang, X.3
Rajasekaran, S.4
Ramprasad, R.5
-
3
-
-
84908046909
-
Rational design of all organic polymer dielectrics
-
Sharma, V. et al. Rational design of all organic polymer dielectrics. Nat. comm. 5, 4845 (2014).
-
(2014)
Nat. Comm.
, vol.5
, pp. 4845
-
-
Sharma, V.1
-
4
-
-
79956067241
-
Recharging lithium battery research with first-principles methods
-
Ceder, G., Hauthier, G., Jain, A. & Ong, S. P. Recharging lithium battery research with first-principles methods. Mater. Res. Soc. Bull. 36, 185-191 (2011).
-
(2011)
Mater. Res. Soc. Bull.
, vol.36
, pp. 185-191
-
-
Ceder, G.1
Hauthier, G.2
Jain, A.3
Ong, S.P.4
-
5
-
-
84858989444
-
AFLOWLIB.ORG: AFLOWLIB. ORG: A distributed materials properties repository from high-throughput ab initio calculations
-
Curtarolo, S. et al. AFLOWLIB.ORG: AFLOWLIB. ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227 (2012).
-
(2012)
Comput. Mater. Sci.
, vol.58
, pp. 227
-
-
Curtarolo, S.1
-
7
-
-
84903166211
-
-
(Documentation) and https://cmr.fysik.dtu.dk/(accessed: 15th October 2015
-
Computational Materials Repository https://wiki.fysik.dtu.dk/cmr/(Documentation) and https://cmr.fysik.dtu.dk/(accessed: 15th October 2015).
-
Computational Materials Repository
-
-
-
8
-
-
84858768961
-
Materials scientists look to a data-intensive future
-
Service, R. F. Materials scientists look to a data-intensive future. Science 335, 1434-1435 (2012).
-
(2012)
Science
, vol.335
, pp. 1434-1435
-
-
Service, R.F.1
-
10
-
-
0034740222
-
Drug design by machine learning: Support vector machines for pharmaceutical data analysis
-
Burbidge, R., Trotter, M., Buxton, B. & Holden, S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Computers & chemistry 26, 5-14 (2001).
-
(2001)
Computers & Chemistry
, vol.26
, pp. 5-14
-
-
Burbidge, R.1
Trotter, M.2
Buxton, B.3
Holden, S.4
-
11
-
-
85058964822
-
Quiz-playing computer system could revolutionize research
-
Available at: Accessed: 23rd November 2015
-
Jones, N. Quiz-playing computer system could revolutionize research. Nature News (2011), Available at: http://dx.doi.org/10.1038/news.2011.95. (Accessed: 23rd November 2015).
-
(2011)
Nature News
-
-
Jones, N.1
-
12
-
-
77956503076
-
Time to automate identification
-
MacLeod, N., Benfield, M. & Culverhouse, P. Time to automate identification. Nature 467, 154-155 (2010).
-
(2010)
Nature
, vol.467
, pp. 154-155
-
-
MacLeod, N.1
Benfield, M.2
Culverhouse, P.3
-
13
-
-
84865627286
-
Machines that Think for Themselves
-
Abu-Mostafa, Y. S. Machines that Think for Themselves. Sci Am 307, 78-81 (2012).
-
(2012)
Sci Am
, vol.307
, pp. 78-81
-
-
Abu-Mostafa, Y.S.1
-
15
-
-
84959532241
-
Machine learning in materials science: Recent progress and emerging applications
-
Accepted for publication
-
Mueller, T., Kusne, A. G. & Ramprasad, R. Machine learning in materials science: Recent progress and emerging applications. Rev. Comput. Chem. (Accepted for publication).
-
Rev. Comput. Chem.
-
-
Mueller, T.1
Kusne, A.G.2
Ramprasad, R.3
-
16
-
-
84903345040
-
-
(ed. Rajan, K.) Ch. 1 Butterworth-Heinemann, Oxford
-
Rajan, K. in Informatics for Materials Science and Engineering: Data-driven Discovery for Accelerated Experimentation and Application (ed. Rajan, K.), Ch. 1, 1-16 (Butterworth-Heinemann, Oxford, 2013).
-
(2013)
Informatics for Materials Science and Engineering: Data-driven Discovery for Accelerated Experimentation and Application
, pp. 1-16
-
-
Rajan, K.1
-
17
-
-
84856512353
-
Fast and accurate modeling of molecular atomization energies with machine learning
-
Rupp, M., Tkatchenko, A., Muller, K.-R. & von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 058301
-
-
Rupp, M.1
Tkatchenko, A.2
Muller, K.-R.3
Von Lilienfeld, O.A.4
-
18
-
-
84937829970
-
Accelerated materials property predictions and design using motif-based fingerprints
-
Huan, T. D., Mannodi-Kanakkithodi, A. & Ramprasad, R. Accelerated materials property predictions and design using motif-based fingerprints, Phys. Rev. B 92, 014106 (2015).
-
(2015)
Phys. Rev. B
, vol.92
, pp. 014106
-
-
Huan, T.D.1
Mannodi-Kanakkithodi, A.2
Ramprasad, R.3
-
19
-
-
84901440781
-
How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
-
Schütt, K. T. et al. How to represent crystal structures for machine learning: Towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).
-
(2014)
Phys. Rev. B
, vol.89
, pp. 205118
-
-
Schütt, K.T.1
-
20
-
-
84897840142
-
Combinatorial screening for new materials in unconstrained composition space with machine learning
-
Meredig, B. et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89 094104 (2014).
-
(2014)
Phys. Rev. B
, vol.89
, pp. 094104
-
-
Meredig, B.1
-
21
-
-
84936846648
-
Crystal Structure Representations for Machine Learning Models of Formation Energies
-
Faber, F., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Crystal Structure Representations for Machine Learning Models of Formation Energies. Int. J. Quantum. Chem. 115, 1094-1101(2015).
-
(2015)
Int. J. Quantum. Chem.
, vol.115
, pp. 1094-1101
-
-
Faber, F.1
Lindmaa, A.2
Von Lilienfeld, O.A.3
Armiento, R.4
-
22
-
-
84955274390
-
-
Faber, F., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Machine Learning Energies of 2 M Elpasolite (ABC2D6) Crystals. http://arxiv.org/abs/1508.05315 (2015).
-
(2015)
Machine Learning Energies of 2 M Elpasolite (ABC2D6) Crystals
-
-
Faber, F.1
Lindmaa, A.2
Von Lilienfeld, O.A.3
Armiento, R.4
-
23
-
-
84862891798
-
Optimizing transition states via kernel-based machine learning
-
Pozun, Z. et al. Optimizing transition states via kernel-based machine learning. Chem. Phys. 136, 174101 (2012).
-
(2012)
Chem. Phys.
, vol.136
, pp. 174101
-
-
Pozun, Z.1
-
24
-
-
79953856961
-
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
-
Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134, 074106 (2011).
-
(2011)
J. Chem. Phys.
, vol.134
, pp. 074106
-
-
Behler, J.1
-
25
-
-
84936800621
-
Adaptive machine learning framework to accelerate ab initio molecular dynamics Int
-
Botu, V. & Ramprasad, R. Adaptive machine learning framework to accelerate ab initio molecular dynamics, Int. J. Quantum Chem. 115, 1074-1083 (2015).
-
(2015)
J. Quantum Chem.
, vol.115
, pp. 1074-1083
-
-
Botu, V.1
Ramprasad, R.2
-
26
-
-
84934783136
-
Structure classification and melting temperature prediction in octet AB solids via machine learning
-
Pilania, G., Gubernatis, J. E. & Lookman, T. Structure classification and melting temperature prediction in octet AB solids via machine learning. Phys. Rev. B 91, 214302 (2015).
-
(2015)
Phys. Rev. B
, vol.91
, pp. 214302
-
-
Pilania, G.1
Gubernatis, J.E.2
Lookman, T.3
-
28
-
-
84943229496
-
Predicting the formability of ABO3 perovskite solids: A machine learning study
-
Pilania, G., Balachandran, P. V., Gubernatis, J. E. & Lookman, T. Predicting the formability of ABO3 perovskite solids: A machine learning study. Acta Cryst. B 71, 507-513 (2015).
-
(2015)
Acta Cryst. B
, vol.71
, pp. 507-513
-
-
Pilania, G.1
Balachandran, P.V.2
Gubernatis, J.E.3
Lookman, T.4
-
29
-
-
84862560607
-
Finding density functionals with machine learning
-
Snyder, J. C., Rupp, M., Hansen, K., Müller, K. R. & Burke, K. Finding density functionals with machine learning. Phys. Rev. Lett. 108, 253002 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 253002
-
-
Snyder, J.C.1
Rupp, M.2
Hansen, K.3
Müller, K.R.4
Burke, K.5
-
30
-
-
84955279176
-
-
arXiv preprint arXiv: 1509.00973
-
Lee, J., Seko, A., Shitara, K. & Tanaka, I. Prediction model of band-gap for AX binary compounds by combination of density functional theory calculations and machine learning techniques. arXiv preprint arXiv:1509.00973 (2015).
-
(2015)
Prediction Model of Band-gap for AX Binary Compounds by Combination of Density Functional Theory Calculations and Machine Learning Techniques
-
-
Lee, J.1
Seko, A.2
Shitara, K.3
Tanaka, I.4
-
31
-
-
84889259535
-
Informatics-aided bandgap engineering for solar materials
-
P., Dey et al. Informatics-aided bandgap engineering for solar materials. Com. Mat. Sci. 83, 185-195 (2014).
-
(2014)
Com. Mat. Sci.
, vol.83
, pp. 185-195
-
-
Dey, P.1
-
33
-
-
79960265735
-
High-throughput combinatorial database of electronic band structures for inorganic scintillator materials
-
Setyawan, W., Gaume, R. M., Lam, S., Feigelson, R. S. & Curtarolo, S. High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. ACS Comb. Sci. 13, 382-390 (2011).
-
(2011)
ACS Comb. Sci.
, vol.13
, pp. 382-390
-
-
Setyawan, W.1
Gaume, R.M.2
Lam, S.3
Feigelson, R.S.4
Curtarolo, S.5
-
34
-
-
80052346613
-
Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics
-
Olivares-Amaya, R. et al. Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy Environ. Sci. 4, 4849 (2011).
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 4849
-
-
Olivares-Amaya, R.1
-
35
-
-
85013980731
-
-
(Eds Nilsson, A., Pettersson, L. G. M. & Norskov, J. K.) Elsevier Amsterdam The Netherlands
-
Chemical Bonding at Surfaces and Interfaces (Eds Nilsson, A., Pettersson, L. G. M. & Norskov, J. K.) (Elsevier, Amsterdam, The Netherlands, 2008).
-
(2008)
Chemical Bonding at Surfaces and Interfaces
-
-
-
36
-
-
36149016819
-
New method for calculating the one-particle Green's function with application to the electron-gas problem
-
Hedin, L. New method for calculating the one-particle Green's function with application to the electron-gas problem. Phys. Rev. 139 A796 (1965).
-
(1965)
Phys. Rev.
, vol.139 A
, pp. 796
-
-
Hedin, L.1
-
37
-
-
34547139312
-
Hybrid functionals based on a screened Coulomb potential
-
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 124, 219906 (2006).
-
(2006)
J. Chem. Phys.
, vol.124
, pp. 219906
-
-
Heyd, J.1
Scuseria, G.E.2
Ernzerhof, M.3
-
38
-
-
84856763665
-
Computational screening of perovskite metal oxides for optimal solar light capture
-
Castelli, I. E. et al. Computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ. Sci. 5, 5814 (2012).
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 5814
-
-
Castelli, I.E.1
-
39
-
-
84900303155
-
Bandgap engineering of double perovskites for one-and two-photon water splitting
-
Castelli, I. E., Thygesen, K. S. & Jacobsen, K. W. Bandgap engineering of double perovskites for one-and two-photon water splitting. MRS Proceedings 1523,121523-0706 (2013), doi: 10.1557/opl.2013.450.
-
(2013)
MRS Proceedings
, vol.1523
, pp. 121523-130706
-
-
Castelli, I.E.1
Thygesen, K.S.2
Jacobsen, K.W.3
-
42
-
-
15444377222
-
Real-space grid implementation of the projector augmented wave method
-
Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 35109 (2005).
-
(2005)
Phys. Rev. B
, vol.71
, pp. 35109
-
-
Mortensen, J.J.1
Hansen, L.B.2
Jacobsen, K.W.3
-
43
-
-
0000396135
-
Self-consistent approximation to the Kohn-Sham exchange potential
-
Gritsenko, O., van Leeuwen, R., van Lenthe, E. & Baerends, E. J. Self-consistent approximation to the Kohn-Sham exchange potential. Phys. Rev. A 51, 1944 (1995).
-
(1995)
Phys. Rev. A
, vol.51
, pp. 1944
-
-
Gritsenko, O.1
Van Leeuwen, R.2
Van Lenthe, E.3
Baerends, E.J.4
-
44
-
-
77957666308
-
Kohn-Sham potential with discontinuity for band gap materials
-
Kuisma, M., Ojanen, J., Enkovaara, J. & Rantala, T. T. Kohn-Sham potential with discontinuity for band gap materials. Phys. Rev. B 82, 115106 (2010).
-
(2010)
Phys. Rev. B
, vol.82
, pp. 115106
-
-
Kuisma, M.1
Ojanen, J.2
Enkovaara, J.3
Rantala, T.T.4
-
45
-
-
0001847092
-
Optimized effective atomic central potential
-
Talman, J. D. & Shadwick, W. F. Optimized effective atomic central potential. Phys. Rev. A 14, 36 (1976).
-
(1976)
Phys. Rev. A
, vol.14
, pp. 36
-
-
Talman, J.D.1
Shadwick, W.F.2
-
46
-
-
84921444588
-
New light-harvesting materials using accurate and efficient bandgap calculations
-
Castelli, I. E. et al. New light-harvesting materials using accurate and efficient bandgap calculations. Adv. Energy Mater. 5, 1400915 (2015).
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1400915
-
-
Castelli, I.E.1
-
47
-
-
84896774397
-
Informatics guided discovery of surface structure-chemistry relationships in catalytic nanoparticles
-
Andriotis, A. N. et al. Informatics guided discovery of surface structure-chemistry relationships in catalytic nanoparticles. J. Chem. Phys. 140, 094705 (2014).
-
(2014)
J. Chem. Phys.
, vol.140
, pp. 094705
-
-
Andriotis, A.N.1
-
48
-
-
84902126520
-
Data mining for materials design: A computational study of single molecule magnet
-
Dam, H. C., Pham, T. L., Ho, T. B., Nguyen, A. T. & Nguyen, V. C. Data mining for materials design: A computational study of single molecule magnet. J. Chem. Phys. 140, 044101 (2014).
-
(2014)
J. Chem. Phys.
, vol.140
, pp. 044101
-
-
Dam, H.C.1
Pham, T.L.2
Ho, T.B.3
Nguyen, A.T.4
Nguyen, V.C.5
-
49
-
-
5244364312
-
The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding
-
Brown, R. D. & Martin, Y. C. The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J. Chem. Inf. Comput. Sci. 37, 1 (1997).
-
(1997)
J. Chem. Inf. Comput. Sci.
, vol.37
, pp. 1
-
-
Brown, R.D.1
Martin, Y.C.2
-
50
-
-
0001052051
-
Systematization of the stable crystal structure of all AB-type binary compounds
-
Zunger, A. Systematization of the stable crystal structure of all AB-type binary compounds. Phys. Rev. B 22, 5839 (1980).
-
(1980)
Phys. Rev. B
, vol.22
, pp. 5839
-
-
Zunger, A.1
-
51
-
-
84925425769
-
Big data of materials science: Critical role of the descriptor
-
Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C. & Scheffler, M. Big data of materials science: Critical role of the descriptor. Phys. Rev. Lett. 114, 105503 (2015).
-
(2015)
Phys. Rev. Lett.
, vol.114
, pp. 105503
-
-
Ghiringhelli, L.M.1
Vybiral, J.2
Levchenko, S.V.3
Draxl, C.4
Scheffler, M.5
-
52
-
-
84872979901
-
Compressive sensing as a paradigm for building physics models
-
Nelson, L. J., Hart, G. L., Zhou, F. & Ozoliš, V. Compressive sensing as a paradigm for building physics models. Phys. Rev. B 87, 035125 (2013).
-
(2013)
Phys. Rev. B
, vol.87
, pp. 035125
-
-
Nelson, L.J.1
Hart, G.L.2
Zhou, F.3
Ozoliš, V.4
-
53
-
-
0003684449
-
-
Springer New York
-
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, New York, 2009).
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
54
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Müller, K.-R., Mika, S., Ratsch, G., Tsuda, K. & Scholkopf, B. An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12, 181-201 (2001).
-
(2001)
IEEE Trans Neural Netw
, vol.12
, pp. 181-201
-
-
Müller, K.-R.1
Mika, S.2
Ratsch, G.3
Tsuda, K.4
Scholkopf, B.5
-
55
-
-
84949644714
-
Transferable atomic multipole machine learning models for small organic molecules
-
Bereau, T., Andrienko, D. & von Lilienfeld, O. A. Transferable atomic multipole machine learning models for small organic molecules. J. Chem. Theory Comput. 11, 3225-3233 (2015).
-
(2015)
J. Chem. Theory Comput.
, vol.11
, pp. 3225-3233
-
-
Bereau, T.1
Andrienko, D.2
Von Lilienfeld, O.A.3
-
56
-
-
84882415695
-
Assessment and validation of machine learning methods for predicting molecular atomization energies
-
Hansen, K. et al. Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9, 3404 (2013).
-
(2013)
J. Chem. Theory Comput.
, vol.9
, pp. 3404
-
-
Hansen, K.1
-
57
-
-
84902578941
-
Modeling electronic quantum transport with machine learning
-
Lopez-Bezanilla, A. & von Lilienfeld, O. A. Modeling electronic quantum transport with machine learning. Phys. Rev. B 89, 235411 (2014).
-
(2014)
Phys. Rev. B
, vol.89
, pp. 235411
-
-
Lopez-Bezanilla, A.1
Von Lilienfeld, O.A.2
-
58
-
-
4243943295
-
Generalized gradient approximation made simple
-
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
|