-
2
-
-
77953990194
-
-
T. P. Yoon, M. A. Ischay, J. Du, Nat. Chem. 2010, 2, 527;
-
(2010)
Nat. Chem.
, vol.2
, pp. 527
-
-
Yoon, T.P.1
Ischay, M.A.2
Du, J.3
-
4
-
-
84955204239
-
-
Selected recent reviews on visible light photoredox catalysis
-
Selected recent reviews on visible light photoredox catalysis:
-
-
-
-
6
-
-
84903279105
-
-
Angew. Chem. 2009, 121, 9969;
-
(2009)
Angew. Chem.
, vol.121
, pp. 9969
-
-
-
11
-
-
84903317897
-
-
Angew. Chem. 2012, 124, 6934;
-
(2012)
Angew. Chem.
, vol.124
, pp. 6934
-
-
-
15
-
-
84880378120
-
-
Angew. Chem. 2013, 125, 4832;
-
(2013)
Angew. Chem.
, vol.125
, pp. 4832
-
-
-
16
-
-
84877108597
-
-
Y. Xi, H. Yi, A. Lei, Org. Biomol. Chem. 2013, 11, 2387;
-
(2013)
Org. Biomol. Chem.
, vol.11
, pp. 2387
-
-
Xi, Y.1
Yi, H.2
Lei, A.3
-
17
-
-
84880124916
-
-
C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322;
-
(2013)
Chem. Rev.
, vol.113
, pp. 5322
-
-
Prier, C.K.1
Rankic, D.A.2
MacMillan, D.W.C.3
-
18
-
-
84885621429
-
-
J. Xuan, L.-Q. Lu, J.-R. Chen, W.-J. Xiao, Eur. J. Org. Chem. 2013, 6755;
-
(2013)
Eur. J. Org. Chem.
, pp. 6755
-
-
Xuan, J.1
Lu, L.-Q.2
Chen, J.-R.3
Xiao, W.-J.4
-
20
-
-
84897915531
-
-
M. N. Hopkinson, B. Sahoo, J.-L. Li, F. Glorius, Chem. Eur. J. 2014, 20, 3874;
-
(2014)
Chem. Eur. J.
, vol.20
, pp. 3874
-
-
Hopkinson, M.N.1
Sahoo, B.2
Li, J.-L.3
Glorius, F.4
-
25
-
-
84955208826
-
-
Selected reviews
-
Selected reviews:
-
-
-
-
27
-
-
80355138841
-
-
V. R. Vemula, S. Vurukonda, C. K. Bairi, Int. J. Pharm. Sci. Rev. Res. 2011, 11, 159;
-
(2011)
Int. J. Pharm. Sci. Rev. Res.
, vol.11
, pp. 159
-
-
Vemula, V.R.1
Vurukonda, S.2
Bairi, C.K.3
-
31
-
-
84955196436
-
-
Review
-
Review:
-
-
-
-
33
-
-
34347204116
-
-
S. Chuprakov, F. W. Hwang, V. Gevorgyan, Angew. Chem. Int. Ed. 2007, 46, 4757;
-
(2007)
Angew. Chem. Int. Ed.
, vol.46
, pp. 4757
-
-
Chuprakov, S.1
Hwang, F.W.2
Gevorgyan, V.3
-
34
-
-
84938422663
-
-
Angew. Chem. 2007, 119, 4841;
-
(2007)
Angew. Chem.
, vol.119
, pp. 4841
-
-
-
35
-
-
84910603429
-
-
A. N. Pandya, J. T. Fletcher, E. M. Villa, D. K. Agrawal, Tetrahedron Lett. 2014, 55, 6922;
-
(2014)
Tetrahedron Lett.
, vol.55
, pp. 6922
-
-
Pandya, A.N.1
Fletcher, J.T.2
Villa, E.M.3
Agrawal, D.K.4
-
36
-
-
84910000543
-
-
L. Xiang, Y. Yang, X. Zhou, X. Liu, X. Li, X. Kang, R. Yan, G. Huang, J. Org. Chem. 2014, 79, 10641;
-
(2014)
J. Org. Chem.
, vol.79
, pp. 10641
-
-
Xiang, L.1
Yang, Y.2
Zhou, X.3
Liu, X.4
Li, X.5
Kang, X.6
Yan, R.7
Huang, G.8
-
37
-
-
84929573571
-
-
S. Tang, K. Liu, Y. Long, X. Gao, M. Gao, A. Lei, Org. Lett. 2015, 17, 2404;
-
(2015)
Org. Lett.
, vol.17
, pp. 2404
-
-
Tang, S.1
Liu, K.2
Long, Y.3
Gao, X.4
Gao, M.5
Lei, A.6
-
38
-
-
84935014956
-
-
R.-R. Liu, J.-J. Hong, C.-J. Lu, M. Xu, J.-R. Gao, Y.-X. Jia, Org. Lett. 2015, 17, 3050.
-
(2015)
Org. Lett.
, vol.17
, pp. 3050
-
-
Liu, R.-R.1
Hong, J.-J.2
Lu, C.-J.3
Xu, M.4
Gao, J.-R.5
Jia, Y.-X.6
-
39
-
-
0028346004
-
-
R. Bonneau, Y. N. Romashin, M. T. H. Liu, S. E. MacPherson, J. Chem. Soc. Chem. Commun. 1994, 509.
-
(1994)
J. Chem. Soc. Chem. Commun.
, pp. 509
-
-
Bonneau, R.1
Romashin, Y.N.2
Liu, M.T.H.3
MacPherson, S.E.4
-
40
-
-
84955207460
-
-
See the Supporting Information for more details.
-
See the Supporting Information for more details.
-
-
-
-
41
-
-
84883189645
-
-
Absorption spectra were also recorded of combinations of the reaction components at higher concentrations to investigate any potential excited donor-acceptor (EDA) complexes. No such effect was observed in any of the cases (see the Supporting Information for more details). For an example of EDA complexes, see.
-
Absorption spectra were also recorded of combinations of the reaction components at higher concentrations to investigate any potential excited donor-acceptor (EDA) complexes. No such effect was observed in any of the cases (see the Supporting Information for more details). For an example of EDA complexes, see, E. Arceo, I. D. Jurberg, A. Álvarez-Fernández, P. Melchiorre, Nat. Chem. 2013, 5, 750.
-
(2013)
Nat. Chem.
, vol.5
, pp. 750
-
-
Arceo, E.1
Jurberg, I.D.2
Álvarez-Fernández, A.3
Melchiorre, P.4
-
42
-
-
84955205441
-
-
Selected examples
-
Selected examples:
-
-
-
-
43
-
-
0344019649
-
-
J. Mahon, L. K. Mehta, R. W. Middleton, J. Parrick, H. K. Rami, J. Chem. Res. Synop. 1992, 362;
-
(1992)
J. Chem. Res. Synop.
, pp. 362
-
-
Mahon, J.1
Mehta, L.K.2
Middleton, R.W.3
Parrick, J.4
Rami, H.K.5
-
44
-
-
47049131006
-
-
M. Becuwe, D. Landy, F. Delattre, F. Cazier, S. Fourmentin, Sensors 2008, 8, 3689;
-
(2008)
Sensors
, vol.8
, pp. 3689
-
-
Becuwe, M.1
Landy, D.2
Delattre, F.3
Cazier, F.4
Fourmentin, S.5
-
45
-
-
84927035497
-
-
A. J. Huckaba, F. Giordano, L. E. McNamara, K. M. Dreux, N. I. Hammer, G. S. Tschumper, S. M. Zakeeruddin, M. Grätzel, M. K. Nazeeruddin, J. H. Delcamp, Adv. Energy Mater. 2015, 5, 1401629.
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1401629
-
-
Huckaba, A.J.1
Giordano, F.2
McNamara, L.E.3
Dreux, K.M.4
Hammer, N.I.5
Tschumper, G.S.6
Zakeeruddin, S.M.7
Grätzel, M.8
Nazeeruddin, M.K.9
Delcamp, J.H.10
-
46
-
-
84969421433
-
-
+ / 3 aa)=-1.9 V versus Ag/AgCl, thus implying that 3 aa∗ is highly reducing (see the Supporting Information)
-
+ / 3 aa)=-1.9 V versus Ag/AgCl, thus implying that 3 aa∗ is highly reducing (see the Supporting Information).
-
-
-
-
47
-
-
84888621241
-
-
As the purest class of such reactions, autocatalytic processes have found many roles across the chemical sciences; for a review on autocatalysis, see
-
As the purest class of such reactions, autocatalytic processes have found many roles across the chemical sciences; for a review on autocatalysis, see, A. J. Bissette, S. P. Fletcher, Angew. Chem. Int. Ed. 2013, 52, 12800;
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 12800
-
-
Bissette, A.J.1
Fletcher, S.P.2
-
48
-
-
84969434343
-
-
Angew. Chem. 2013, 125, 13034.
-
(2013)
Angew. Chem.
, vol.125
, pp. 13034
-
-
-
49
-
-
84969421950
-
-
Indolizine 3 aa is not thought to be acting as a genuine autocatalyst in any of the cases. The increase in the initial rate observed upon adding additional 3 aa would be expected to be greater if this compound was a true autocatalyst. Also, the cyclic voltammetry data of 3 aa indicates that the oxidized form generated upon SET to 1 a is not stable and would lead to decomposition (see the Supporting Information for more details)
-
Indolizine 3 aa is not thought to be acting as a genuine autocatalyst in any of the cases. The increase in the initial rate observed upon adding additional 3 aa would be expected to be greater if this compound was a true autocatalyst. Also, the cyclic voltammetry data of 3 aa indicates that the oxidized form generated upon SET to 1 a is not stable and would lead to decomposition (see the Supporting Information for more details).
-
-
-
-
50
-
-
84969412953
-
-
max=465 nm) as the irradiation source fitted with a long-pass filter at 455 nm, however, resulted in only a 15 % yield of 3 aa (GC yield, cf. 55 % GC yield in the absence of the filter). Indolizine 3 aa was formed in 48 % GC yield using the same light source with a long-pass filter at 400 nm. These results would seem to imply that the visible-light tail of the blue LEDs at wavelengths below 455 nm (and above 400 nm) is mostly responsible for the observed reactivity
-
max=465 nm) as the irradiation source fitted with a long-pass filter at 455 nm, however, resulted in only a 15 % yield of 3 aa (GC yield, cf. 55 % GC yield in the absence of the filter). Indolizine 3 aa was formed in 48 % GC yield using the same light source with a long-pass filter at 400 nm. These results would seem to imply that the visible-light tail of the blue LEDs at wavelengths below 455 nm (and above 400 nm) is mostly responsible for the observed reactivity.
-
-
-
-
51
-
-
84955190335
-
-
The involvement of EDA complexes formed between the indolizine products and the other reaction components was also ruled out by a series of absorption studies (see the Supporting Information for more details)
-
The involvement of EDA complexes formed between the indolizine products and the other reaction components was also ruled out by a series of absorption studies (see the Supporting Information for more details).
-
-
-
-
52
-
-
84969424804
-
-
The involvement of radical chains in this process is supported by the success of the reaction using the thermal radical initiator dibenzoyl peroxide. Conducting the reaction between 1 a and 2 a in the presence of this species (0.5 equiv) at 105 C without light resulted in the formation of 3 aa in 26 % yield (see the Supporting Information for more details)
-
The involvement of radical chains in this process is supported by the success of the reaction using the thermal radical initiator dibenzoyl peroxide. Conducting the reaction between 1 a and 2 a in the presence of this species (0.5 equiv) at 105 C without light resulted in the formation of 3 aa in 26 % yield (see the Supporting Information for more details).
-
-
-
-
53
-
-
77954133344
-
-
L. Furst, B. S. Matsuura, J. M. R. Narayanam, J. W. Tucker, C. R. J. Stephenson, Org. Lett. 2010, 12, 3104.
-
(2010)
Org. Lett.
, vol.12
, pp. 3104
-
-
Furst, L.1
Matsuura, B.S.2
Narayanam, J.M.R.3
Tucker, J.W.4
Stephenson, C.R.J.5
|