메뉴 건너뛰기




Volumn 29, Issue , 2015, Pages 357-370

Efficient multi-criteria optimization on noisy machine learning problems

Author keywords

Efficient Global Optimization; Hypervolume indicator; Kriging; Machine learning; Multi criteria optimization

Indexed keywords

ARTIFICIAL INTELLIGENCE; BUDGET CONTROL; GLOBAL OPTIMIZATION; INTERPOLATION; SUPERVISED LEARNING;

EID: 84954468789     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2015.01.005     Document Type: Article
Times cited : (38)

References (70)
  • 1
    • 84922164444 scopus 로고    scopus 로고
    • Tuning and evolution of support vector kernels
    • (Special Issue on Evolutionary Kernel Machines)
    • P. Koch, B. Bischl, O. Flasch, T. Bartz-Beielstein, C. Weihs, and W. Konen Tuning and evolution of support vector kernels Evol. Intell. 2011 1 18 (Special Issue on Evolutionary Kernel Machines)
    • (2011) Evol. Intell. , pp. 1-18
    • Koch, P.1    Bischl, B.2    Flasch, O.3    Bartz-Beielstein, T.4    Weihs, C.5    Konen, W.6
  • 2
    • 84866414175 scopus 로고    scopus 로고
    • Efficient sampling and handling of variance in tuning data mining models
    • V. Cutello, M. Pavone, Springer Berlin, Taormina, Italy
    • P. Koch, and W. Konen Efficient sampling and handling of variance in tuning data mining models V. Cutello, M. Pavone, PPSN 2012: 12th International Conference on Parallel Problem Solving from Nature 2012 Springer Berlin, Taormina, Italy 195 205
    • (2012) PPSN 2012: 12th International Conference on Parallel Problem Solving from Nature , pp. 195-205
    • Koch, P.1    Konen, W.2
  • 4
    • 0000561424 scopus 로고    scopus 로고
    • Efficient global optimization of expensive black-box functions
    • D. Jones, M. Schonlau, and W. Welch Efficient global optimization of expensive black-box functions J. Global Optim. 13 4 1998 455 492
    • (1998) J. Global Optim. , vol.13 , Issue.4 , pp. 455-492
    • Jones, D.1    Schonlau, M.2    Welch, W.3
  • 9
    • 0001935527 scopus 로고    scopus 로고
    • An introduction to model selection
    • W. Zucchini An introduction to model selection J. Math. Psychol. 44 1 2000 41 61
    • (2000) J. Math. Psychol. , vol.44 , Issue.1 , pp. 41-61
    • Zucchini, W.1
  • 10
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee Choosing multiple parameters for support vector machines Mach. Learn. 46 1 2002 131 159
    • (2002) Mach. Learn. , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 11
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
    • S. Keerthi Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms IEEE Trans. Neural Netw. 13 5 2002 1225 1229
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.5 , pp. 1225-1229
    • Keerthi, S.1
  • 13
    • 35048862885 scopus 로고    scopus 로고
    • Model selection for support vector classifiers via genetic algorithms. An application to medical decision support
    • G. Cohen, M. Hilario, and A. Geissbuhler Model selection for support vector classifiers via genetic algorithms. An application to medical decision support Biol. Med. Data Anal. 2004 200 211
    • (2004) Biol. Med. Data Anal. , pp. 200-211
    • Cohen, G.1    Hilario, M.2    Geissbuhler, A.3
  • 14
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • F. Friedrichs, and C. Igel Evolutionary tuning of multiple SVM parameters Neurocomputing 64 2005 107 117
    • (2005) Neurocomputing , vol.64 , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 15
    • 0035377566 scopus 로고    scopus 로고
    • Completely derandomized self-adaptation in evolution strategies
    • N. Hansen, and A. Ostermeier Completely derandomized self-adaptation in evolution strategies Evol. Comput. 9 2001 159 195
    • (2001) Evol. Comput. , vol.9 , pp. 159-195
    • Hansen, N.1    Ostermeier, A.2
  • 17
    • 23944487822 scopus 로고    scopus 로고
    • Gradient-based adaptation of general Gaussian kernels
    • T. Glasmachers, and C. Igel Gradient-based adaptation of general Gaussian kernels Neural Comput. 17 10 2005 2099 2105
    • (2005) Neural Comput. , vol.17 , Issue.10 , pp. 2099-2105
    • Glasmachers, T.1    Igel, C.2
  • 19
    • 0002363078 scopus 로고
    • On the experimental attainment of optimum conditions
    • G. Box, and K. Wilson On the experimental attainment of optimum conditions J. R. Stat. Soc. 13 1 1951 1 45
    • (1951) J. R. Stat. Soc. , vol.13 , Issue.1 , pp. 1-45
    • Box, G.1    Wilson, K.2
  • 20
    • 84972517827 scopus 로고
    • Design and analysis of computer experiments
    • J. Sacks, W. Welch, T. Mitchell, and H. Wynn Design and analysis of computer experiments Stat. Sci. 4 4 1989 409 423
    • (1989) Stat. Sci. , vol.4 , Issue.4 , pp. 409-423
    • Sacks, J.1    Welch, W.2    Mitchell, T.3    Wynn, H.4
  • 21
    • 21144433756 scopus 로고    scopus 로고
    • A comprehensive survey of fitness approximation in evolutionary computation
    • Y. Jin A comprehensive survey of fitness approximation in evolutionary computation Soft Comput. 9 1 2005 3 12
    • (2005) Soft Comput. , vol.9 , Issue.1 , pp. 3-12
    • Jin, Y.1
  • 22
    • 0034993449 scopus 로고    scopus 로고
    • Kriging as a surrogate fitness landscape in evolutionary optimization
    • A. Ratle Kriging as a surrogate fitness landscape in evolutionary optimization Artif. Intell. Eng. Des. Manuf. 15 1 2001 37 49
    • (2001) Artif. Intell. Eng. Des. Manuf. , vol.15 , Issue.1 , pp. 37-49
    • Ratle, A.1
  • 23
    • 33747424045 scopus 로고    scopus 로고
    • Single-and multiobjective evolutionary optimization assisted by Gaussian random field metamodels
    • M. Emmerich, K. Giannakoglou, and B. Naujoks Single-and multiobjective evolutionary optimization assisted by Gaussian random field metamodels IEEE Trans. Evol. Comput. 10 4 2006 421 439
    • (2006) IEEE Trans. Evol. Comput. , vol.10 , Issue.4 , pp. 421-439
    • Emmerich, M.1    Giannakoglou, K.2    Naujoks, B.3
  • 25
    • 77953081384 scopus 로고    scopus 로고
    • Generalizing surrogate-assisted evolutionary computation
    • D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff Generalizing surrogate-assisted evolutionary computation IEEE Trans. Evol. Comput. 14 3 2010 329 355
    • (2010) IEEE Trans. Evol. Comput. , vol.14 , Issue.3 , pp. 329-355
    • Lim, D.1    Jin, Y.2    Ong, Y.-S.3    Sendhoff, B.4
  • 26
    • 33750550283 scopus 로고    scopus 로고
    • Design and analysis of "noisy" computer experiments
    • A. Forrester, A. Keane, and N. Bressloff Design and analysis of "noisy" computer experiments AIAA J. 44 10 2006 2331
    • (2006) AIAA J. , vol.44 , Issue.10 , pp. 2331
    • Forrester, A.1    Keane, A.2    Bressloff, N.3
  • 27
    • 33644791173 scopus 로고    scopus 로고
    • Global optimization of stochastic black-box systems via sequential Kriging meta-models
    • D. Huang, T.T. Allen, W.I. Notz, and N. Zeng Global optimization of stochastic black-box systems via sequential Kriging meta-models J. Global Optim. 34 3 2006 441 466
    • (2006) J. Global Optim. , vol.34 , Issue.3 , pp. 441-466
    • Huang, D.1    Allen, T.T.2    Notz, W.I.3    Zeng, N.4
  • 28
    • 84865114348 scopus 로고    scopus 로고
    • Noisy expected improvement and on-line computation time allocation for the optimization of simulators with tunable fidelity
    • V. Picheny, D. Ginsbourger, and Y. Richet Noisy expected improvement and on-line computation time allocation for the optimization of simulators with tunable fidelity 2nd International Conference on Engineering Optimization 2010 1 10
    • (2010) 2nd International Conference on Engineering Optimization , pp. 1-10
    • Picheny, V.1    Ginsbourger, D.2    Richet, Y.3
  • 29
    • 84885432976 scopus 로고    scopus 로고
    • A benchmark of Kriging-based infill criteria for noisy optimization
    • V. Picheny, T. Wagner, and D. Ginsbourger A benchmark of Kriging-based infill criteria for noisy optimization Struct. Multidis. Optim. 48 3 2013 607 626
    • (2013) Struct. Multidis. Optim. , vol.48 , Issue.3 , pp. 607-626
    • Picheny, V.1    Wagner, T.2    Ginsbourger, D.3
  • 31
    • 33645030729 scopus 로고    scopus 로고
    • A critical review of multi-objective optimization in data mining: A position paper
    • A. Freitas A critical review of multi-objective optimization in data mining: a position paper ACM SIGKDD Explor. Newsl. 6 2 2004 77 86
    • (2004) ACM SIGKDD Explor. Newsl. , vol.6 , Issue.2 , pp. 77-86
    • Freitas, A.1
  • 32
    • 43449135303 scopus 로고    scopus 로고
    • Pareto-based multiobjective machine learning: An overview and case studies
    • Y. Jin, and B. Sendhoff Pareto-based multiobjective machine learning: an overview and case studies IEEE Trans. Syst. Man Cybern. C: Appl. Rev. 38 3 2008 397 415
    • (2008) IEEE Trans. Syst. Man Cybern. C: Appl. Rev. , vol.38 , Issue.3 , pp. 397-415
    • Jin, Y.1    Sendhoff, B.2
  • 35
    • 0008621289 scopus 로고    scopus 로고
    • Low-cost genetic optimization based on inexact pre-evaluations and the sensitivity analysis of design parameters
    • K. Giannakoglou, A. Giotis, and M. Karakasis Low-cost genetic optimization based on inexact pre-evaluations and the sensitivity analysis of design parameters Inverse Probl. Eng. 9 4 2001 389 412
    • (2001) Inverse Probl. Eng. , vol.9 , Issue.4 , pp. 389-412
    • Giannakoglou, K.1    Giotis, A.2    Karakasis, M.3
  • 36
    • 24344492742 scopus 로고    scopus 로고
    • Metamodel assisted multiobjective optimisation strategies and their application in airfoil design
    • M. Emmerich, and B. Naujoks Metamodel assisted multiobjective optimisation strategies and their application in airfoil design Adaptive Computing in Design and Manufacture VI 2004 249 260
    • (2004) Adaptive Computing in Design and Manufacture VI , pp. 249-260
    • Emmerich, M.1    Naujoks, B.2
  • 37
    • 77957917714 scopus 로고    scopus 로고
    • Performance evaluation of efficient multi-objective evolutionary algorithms for design space exploration of embedded computer systems
    • G. Ascia, V. Catania, A. Di Nuovo, M. Palesi, and D. Patti Performance evaluation of efficient multi-objective evolutionary algorithms for design space exploration of embedded computer systems Appl. Soft Comput. 11 1 2011 382 398
    • (2011) Appl. Soft Comput. , vol.11 , Issue.1 , pp. 382-398
    • Ascia, G.1    Catania, V.2    Di Nuovo, A.3    Palesi, M.4    Patti, D.5
  • 38
    • 31744437433 scopus 로고    scopus 로고
    • ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
    • J. Knowles ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems IEEE Trans. Evol. Comput. 10 1 2006 50 66
    • (2006) IEEE Trans. Evol. Comput. , vol.10 , Issue.1 , pp. 50-66
    • Knowles, J.1
  • 41
    • 77953083432 scopus 로고    scopus 로고
    • Expensive multiobjective optimization by MOEA/D with Gaussian process model
    • Q. Zhang, W. Liu, E. Tsang, and B. Virginas Expensive multiobjective optimization by MOEA/D with Gaussian process model IEEE Trans. Evol. Comput. 14 3 2010 456 474
    • (2010) IEEE Trans. Evol. Comput. , vol.14 , Issue.3 , pp. 456-474
    • Zhang, Q.1    Liu, W.2    Tsang, E.3    Virginas, B.4
  • 45
    • 0000455229 scopus 로고
    • A statistical approach to some basic mine valuation problems on the Witwatersrand
    • D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand J. Chem. Metal Mining Soc. South Africa 52 1951 119 139
    • (1951) J. Chem. Metal Mining Soc. South Africa , vol.52 , pp. 119-139
    • Krige, D.1
  • 50
    • 67349096348 scopus 로고    scopus 로고
    • Ns-kriging based microstructural optimization applied to minimizing stochastic variation of homogenized elasticity of fiber reinforced composites
    • S. Sakata, and F. Ashida Ns-kriging based microstructural optimization applied to minimizing stochastic variation of homogenized elasticity of fiber reinforced composites Struct. Multidis. Optim. 38 5 2009 443 453
    • (2009) Struct. Multidis. Optim. , vol.38 , Issue.5 , pp. 443-453
    • Sakata, S.1    Ashida, F.2
  • 51
    • 0342813049 scopus 로고
    • The application of Bayesian methods for seeking the extremum
    • J. Mockus, V. Tiesis, and A. Zilinskas The application of Bayesian methods for seeking the extremum Towards Global Optim. 2 1978 117 129
    • (1978) Towards Global Optim. , vol.2 , pp. 117-129
    • Mockus, J.1    Tiesis, V.2    Zilinskas, A.3
  • 53
  • 54
    • 84903612920 scopus 로고    scopus 로고
    • Updating kriging surrogate models based on the hypervolume indicator in multi-objective optimization
    • K. Shimoyama, K. Sato, S. Jeong, and S. Obayashi Updating kriging surrogate models based on the hypervolume indicator in multi-objective optimization J. Mech. Des. 135 9 2013
    • (2013) J. Mech. Des. , vol.135 , Issue.9
    • Shimoyama, K.1    Sato, K.2    Jeong, S.3    Obayashi, S.4
  • 55
    • 35248897594 scopus 로고    scopus 로고
    • The measure of Pareto optima applications to multi-objective metaheuristics
    • Springer
    • M. Fleischer The measure of Pareto optima applications to multi-objective metaheuristics Evolutionary Multi-Criterion Optimization (EMO) 2003 Springer 519 533
    • (2003) Evolutionary Multi-Criterion Optimization (EMO) , pp. 519-533
    • Fleischer, M.1
  • 59
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multiobjective evolutionary algorithms: Empirical results
    • E. Zitzler, K. Deb, and T. Thiele Comparison of multiobjective evolutionary algorithms: empirical results Evol. Comput. 8 2 2000 173 195
    • (2000) Evol. Comput. , vol.8 , Issue.2 , pp. 173-195
    • Zitzler, E.1    Deb, K.2    Thiele, T.3
  • 60
    • 84860399105 scopus 로고    scopus 로고
    • Predicting organic acid concentration from UV/vis spectrometry measurements - A comparison of machine learning techniques
    • C. Wolf, D. Gaida, A. Stuhlsatz, T. Ludwig, S. McLoone, and M. Bongards Predicting organic acid concentration from UV/vis spectrometry measurements - a comparison of machine learning techniques Trans. Inst. Meas. Control 19 2011 1 11
    • (2011) Trans. Inst. Meas. Control , vol.19 , pp. 1-11
    • Wolf, C.1    Gaida, D.2    Stuhlsatz, A.3    Ludwig, T.4    McLoone, S.5    Bongards, M.6
  • 64
    • 84920706570 scopus 로고    scopus 로고
    • Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization
    • I. Couckuyt, D. Deschrijver, and T. Dhaene Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization J. Global Optim. 60 3 2014 575 594
    • (2014) J. Global Optim. , vol.60 , Issue.3 , pp. 575-594
    • Couckuyt, I.1    Deschrijver, D.2    Dhaene, T.3
  • 65
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Mach. Learn. 45 1 2001 5 32
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 66
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Mach. Learn. 20 3 1995 273 297
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 69
    • 33751080622 scopus 로고    scopus 로고
    • SVM multi-class classification
    • G. Bo, and H. Xianwu SVM multi-class classification J. Data Acquisit. Process. 21 3 2006 334 339
    • (2006) J. Data Acquisit. Process. , vol.21 , Issue.3 , pp. 334-339
    • Bo, G.1    Xianwu, H.2
  • 70
    • 84864615370 scopus 로고    scopus 로고
    • Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization
    • O. Schütze, X. Esquivel, A. Lara, and C. Coello Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization IEEE Trans. Evol. Comput. 16 4 2012 504 522
    • (2012) IEEE Trans. Evol. Comput. , vol.16 , Issue.4 , pp. 504-522
    • Schütze, O.1    Esquivel, X.2    Lara, A.3    Coello, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.