메뉴 건너뛰기




Volumn 60, Issue 3, 2014, Pages 575-594

Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization

Author keywords

Expected improvement; Gaussian process; Hypervolume; Kriging; Multiobjective optimization; Probability of improvement

Indexed keywords

COST FUNCTIONS; EVOLUTIONARY ALGORITHMS; INTERPOLATION; PARETO PRINCIPLE;

EID: 84920706570     PISSN: 09255001     EISSN: 15732916     Source Type: Journal    
DOI: 10.1007/s10898-013-0118-2     Document Type: Article
Times cited : (235)

References (45)
  • 1
    • 70349104508 scopus 로고    scopus 로고
    • Theory of the hypervolume indicator: optimal $$\mu $$μ-distributions and the choice of the reference point
    • Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: optimal $$\mu $$μ-distributions and the choice of the reference point. In: Workshop Foundation Genetic Algorithms (2009)
    • (2009) Workshop Foundation Genetic Algorithms
    • Auger, A.1    Bader, J.2    Brockhoff, D.3    Zitzler, E.4
  • 3
    • 72249110751 scopus 로고    scopus 로고
    • S-metric calculation by considering dominated hypervolume as klee’s measure problem
    • Beume, N.: S-metric calculation by considering dominated hypervolume as klee’s measure problem. Evol. Comput. 17(4), 477–492 (2009)
    • (2009) Evol. Comput. , vol.17 , Issue.4 , pp. 477-492
    • Beume, N.1
  • 4
    • 70349847838 scopus 로고    scopus 로고
    • On the complexity of computing the hypervolume indicator
    • Beume, N., Fonseca, C.M., López-Ibánez, M.: On the complexity of computing the hypervolume indicator. IEEE Trans. Evol. Comput. 13(5), 1075–1082 (2009)
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.5 , pp. 1075-1082
    • Beume, N.1    Fonseca, C.M.2    López-Ibánez, M.3
  • 5
    • 33947669974 scopus 로고    scopus 로고
    • SMS-EMOA: multiobjective selection based on dominated hypervolume
    • Beume, N., Naujoks, B., Emmerich, M.T.M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)
    • (2007) Eur. J. Oper. Res. , vol.181 , Issue.3 , pp. 1653-1669
    • Beume, N.1    Naujoks, B.2    Emmerich, M.T.M.3
  • 7
    • 84977518660 scopus 로고    scopus 로고
    • Approximating the least hypervolume contributor: NP-hard in general, but fast in practice
    • Bringmann, K., Friedrich, T.: Approximating the least hypervolume contributor: NP-hard in general, but fast in practice. In: Evolutionary Multiobjective Optimization (2009)
    • (2009) Evolutionary Multiobjective Optimization
    • Bringmann, K.1    Friedrich, T.2
  • 9
    • 77956538417 scopus 로고    scopus 로고
    • An efficient algorithm for computing hypervolume contributions
    • Bringmann, K., Friedrich, T.: An efficient algorithm for computing hypervolume contributions. Evol. Comput. 18(3), 383–402 (2010)
    • (2010) Evol. Comput. , vol.18 , Issue.3 , pp. 383-402
    • Bringmann, K.1    Friedrich, T.2
  • 14
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. Evol. Comput. IEEE Trans. 6(2), 182–197 (2002)
    • (2002) Evol. Comput. IEEE Trans. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 15
    • 1842805157 scopus 로고    scopus 로고
    • Scalable test problems for evolutionary multi-objective optimization
    • Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland:
    • Deb, K., Thiele, L., Laummans, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. Technical Report 112, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (2001)
    • (2001) Technical Report , vol.112
    • Deb, K.1    Thiele, L.2    Laummans, M.3    Zitzler, E.4
  • 17
    • 33747424045 scopus 로고    scopus 로고
    • Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels
    • Emmerich, M.T.M., Giannakoglou, K., Naujoks, B.: Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels. IEEE Trans. Evol. Comput. 10(4), 421–439 (2006)
    • (2006) IEEE Trans. Evol. Comput. , vol.10 , Issue.4 , pp. 421-439
    • Emmerich, M.T.M.1    Giannakoglou, K.2    Naujoks, B.3
  • 18
    • 35248897594 scopus 로고    scopus 로고
    • The measure of Pareto optima: applications to multi-objective metaheuristics, pp. 519–533
    • Fleischer, M.: The measure of Pareto optima: applications to multi-objective metaheuristics, pp. 519–533. In: Evolutionary Multi-Criterion Optimization (2003)
    • (2003) Evolutionary Multi-Criterion Optimization
    • Fleischer, M.1
  • 21
    • 47749091906 scopus 로고    scopus 로고
    • A multi-objective evolutionary algorithm using neural networks to approximate fitness evaluations
    • Gaspar-Cunha, A., Vieira, A.: A multi-objective evolutionary algorithm using neural networks to approximate fitness evaluations. Int. J. Comput. Syst. Signals 6(1), 18–36 (2004)
    • (2004) Int. J. Comput. Syst. Signals , vol.6 , Issue.1 , pp. 18-36
    • Gaspar-Cunha, A.1    Vieira, A.2
  • 22
  • 23
    • 85016700972 scopus 로고    scopus 로고
    • Efficient global optimization (ego) for multi-objective problem and data mining
    • Jeong, S., Obayashi, S.: Efficient global optimization (ego) for multi-objective problem and data mining. In: Congress on Evolutionary Computation (2010)
    • (2010) Congress on Evolutionary Computation
    • Jeong, S.1    Obayashi, S.2
  • 24
    • 0035577808 scopus 로고    scopus 로고
    • A taxonomy of global optimization methods based on response surfaces
    • Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. Glob. Optim. 21, 345–383 (2001)
    • (2001) Glob. Optim. , vol.21 , pp. 345-383
    • Jones, D.R.1
  • 25
    • 0000561424 scopus 로고    scopus 로고
    • Efficient global optimization of expensive black-box functions
    • Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)
    • (1998) J. Glob. Optim. , vol.13 , Issue.4 , pp. 455-492
    • Jones, D.R.1    Schonlau, M.2    Welch, W.J.3
  • 26
    • 33646437256 scopus 로고    scopus 로고
    • Statistical improvement criteria for use in multiobjective design optimization
    • Keane, A.J.: Statistical improvement criteria for use in multiobjective design optimization. AIAA J. 44(4), 879–891 (2006)
    • (2006) AIAA J. , vol.44 , Issue.4 , pp. 879-891
    • Keane, A.J.1
  • 28
    • 31744437433 scopus 로고    scopus 로고
    • ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
    • Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)
    • (2006) IEEE Trans. Evol. Comput. , vol.10 , Issue.1 , pp. 50-66
    • Knowles, J.1
  • 31
    • 0037952131 scopus 로고    scopus 로고
    • Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. PhD thesis. University of Reading
    • Knowles, J. D.: Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. PhD thesis. University of Reading, UK (2002)
    • (2002) UK
    • Knowles, J.D.1
  • 36
    • 78149266813 scopus 로고    scopus 로고
    • On expected-improvement criteria for model-based multi-objective optimization
    • Wagner, T., Emmerich, M., Deutz, A., Ponweiser, W.: On expected-improvement criteria for model-based multi-objective optimization. Parallel Probl. Solving Nat. 6238, 718–727 (2010)
    • (2010) Parallel Probl. Solving Nat. , vol.6238 , pp. 718-727
    • Wagner, T.1    Emmerich, M.2    Deutz, A.3    Ponweiser, W.4
  • 37
    • 34248346299 scopus 로고    scopus 로고
    • Review of metamodeling techniques in support of engineering design optimization
    • Wang, G., Shan, S.: Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 129(4), 370–380 (2007)
    • (2007) J. Mech. Des. , vol.129 , Issue.4 , pp. 370-380
    • Wang, G.1    Shan, S.2
  • 40
    • 31744438420 scopus 로고    scopus 로고
    • A faster algorithm for calculating hypervolume
    • While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. Evol. Comput. 10(1), 29–38 (2006)
    • (2006) Evol. Comput. , vol.10 , Issue.1 , pp. 29-38
    • While, L.1    Hingston, P.2    Barone, L.3    Huband, S.4
  • 41
    • 77953083432 scopus 로고    scopus 로고
    • Expensive multiobjective optimization by MOEA/D with Gaussian process model
    • Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with Gaussian process model. Evol. Comput. 14(3), 456–474 (2010)
    • (2010) Evol. Comput. , vol.14 , Issue.3 , pp. 456-474
    • Zhang, Q.1    Liu, W.2    Tsang, E.3    Virginas, B.4
  • 44
    • 0004140075 scopus 로고    scopus 로고
    • Spea2: Improving the Performance of the Strength Pareto Evolutionary Algorithm. Technical Report
    • Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the Performance of the Strength Pareto Evolutionary Algorithm. Technical Report. Swiss Federal Institute of Technology (2001)
    • (2001) Swiss Federal Institute of Technology
    • Zitzler, E.1    Laumanns, M.2    Thiele, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.