메뉴 건너뛰기




Volumn 30, Issue 8, 2016, Pages 1486-1506

Interactive discovery of sequential patterns in time series of wind data

Author keywords

coordinated multiple views; direction; frequent patterns; interactive visualization; sequential pattern mining; sliding window; Wind speed

Indexed keywords

ATMOSPHERIC PRESSURE; COORDINATE; DATA PROCESSING; GIS; TEMPERATURE GRADIENT; TIME SERIES ANALYSIS; VISUALIZATION; WIND DIRECTION; WIND VELOCITY;

EID: 84954289747     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2015.1135928     Document Type: Article
Times cited : (8)

References (60)
  • 3
    • 84884373079 scopus 로고    scopus 로고
    • Geographical and seasonal variability of the global “practical” wind resources
    • C.L.Archer, and M.Z.Jacobson,, 2013. Geographical and seasonal variability of the global “practical” wind resources. Applied Geography, 45 (0), 119–130. doi:10.1016/j.apgeog.2013.07.006
    • (2013) Applied Geography , vol.45 , pp. 119-130
    • Archer, C.L.1    Jacobson, M.Z.2
  • 5
    • 16244392292 scopus 로고    scopus 로고
    • A model and software system for coordinated and multiple views in exploratory visualization
    • N.Boukhelifa, and P.J.Rodgers,, 2003. A model and software system for coordinated and multiple views in exploratory visualization. Information Visualization, 2 (4), 258–269. doi:10.1057/palgrave.ivs.9500057
    • (2003) Information Visualization , vol.2 , Issue.4 , pp. 258-269
    • Boukhelifa, N.1    Rodgers, P.J.2
  • 7
    • 52949134768 scopus 로고    scopus 로고
    • A temporal focus + Context visualization model for handling valid-time spatial information
    • A.Carvalho,, et al., 2008. A temporal focus + Context visualization model for handling valid-time spatial information. Information Visualization, 7 (3–4), 265–274. doi:10.1057/palgrave.ivs.9500188
    • (2008) Information Visualization , vol.7 , Issue.3-4 , pp. 265-274
    • Carvalho, A.1
  • 8
    • 0141921659 scopus 로고    scopus 로고
    • Discovering time-interval sequential patterns in sequence databases
    • Y.-L.Chen,, M.-C.Chiang,, and M.-T.Ko,, 2003. Discovering time-interval sequential patterns in sequence databases. Expert Systems with Applications, 25 (3), 343–354. doi:10.1016/S0957-4174(03)00075-7
    • (2003) Expert Systems with Applications , vol.25 , Issue.3 , pp. 343-354
    • Chen, Y.-L.1    Chiang, M.-C.2    Ko, M.-T.3
  • 9
    • 33749569695 scopus 로고    scopus 로고
    • Constraint-based sequential pattern mining: the consideration of recency and compactness
    • Y.-L.Chen, and Y.-H.Hu,, 2006. Constraint-based sequential pattern mining: the consideration of recency and compactness. Decision Support Systems, 42 (2), 1203–1215. doi:10.1016/j.dss.2005.10.006
    • (2006) Decision Support Systems , vol.42 , Issue.2 , pp. 1203-1215
    • Chen, Y.-L.1    Hu, Y.-H.2
  • 10
    • 84860890595 scopus 로고    scopus 로고
    • Data mining and wind power prediction: A literature review
    • I.Colak,, S.Sagiroglu,, and M.Yesilbudak,, 2012. Data mining and wind power prediction: A literature review. Renewable Energy, 46, 241–247. doi:10.1016/j.renene.2012.02.015
    • (2012) Renewable Energy , vol.46 , pp. 241-247
    • Colak, I.1    Sagiroglu, S.2    Yesilbudak, M.3
  • 11
    • 84964508209 scopus 로고    scopus 로고
    • Proceedings of the Fourth ACM SIGKDD international conference on knowledge discovery and data mining, New York: American Association for Artificial Intelligence
    • G.Das,, et al., 1998. Rule discovery from time series. In: Proceedings of the Fourth ACM SIGKDD international conference on knowledge discovery and data mining, 27–31 August New York. New York: American Association for Artificial Intelligence, 16–22.
    • (1998) Rule discovery from time series
    • Das, G.1
  • 13
    • 84920709126 scopus 로고    scopus 로고
    • Stacked space-time densities: a geovisualisation approach to explore dynamics of space use over time
    • U.Demšar,, et al., 2015. Stacked space-time densities: a geovisualisation approach to explore dynamics of space use over time. GeoInformatica, 19 (1), 85–115. doi:10.1007/s10707-014-0207-5
    • (2015) GeoInformatica , vol.19 , Issue.1 , pp. 85-115
    • Demšar, U.1
  • 14
    • 84899482449 scopus 로고    scopus 로고
    • A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data
    • D.Gotz,, F.Wang,, and A.Perer,, 2014. A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data. Journal of Biomedical Informatics, 48, 148–159. doi:10.1016/j.jbi.2014.01.007
    • (2014) Journal of Biomedical Informatics , vol.48 , pp. 148-159
    • Gotz, D.1    Wang, F.2    Perer, A.3
  • 15
    • 84920252974 scopus 로고    scopus 로고
    • Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches
    • C.Helbig,, et al., 2014. Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches. Environmental Earth Sciences, 72 (10), 3767–3780. doi:10.1007/s12665-014-3136-6
    • (2014) Environmental Earth Sciences , vol.72 , Issue.10 , pp. 3767-3780
    • Helbig, C.1
  • 17
    • 34948870441 scopus 로고    scopus 로고
    • Discovery of maximum length frequent itemsets
    • T.Hu,, et al., 2008. Discovery of maximum length frequent itemsets. Information Sciences, 178 (1), 69–87. doi:10.1016/j.ins.2007.08.006
    • (2008) Information Sciences , vol.178 , Issue.1 , pp. 69-87
    • Hu, T.1
  • 18
    • 69349098637 scopus 로고    scopus 로고
    • On mining multi-time-interval sequential patterns
    • Y.-H.Hu,, et al., 2009. On mining multi-time-interval sequential patterns. Data & Knowledge Engineering, 68 (10), 1112–1127. doi:10.1016/j.datak.2009.05.003
    • (2009) Data & Knowledge Engineering , vol.68 , Issue.10 , pp. 1112-1127
    • Hu, Y.-H.1
  • 19
    • 70349124566 scopus 로고    scopus 로고
    • Developing a geovisual analytics environment for investigating archaeological events: extending the space-time cube
    • O.Huisman,, et al., 2009. Developing a geovisual analytics environment for investigating archaeological events: extending the space-time cube. Cartography and Geographic Information Science, 36 (3), 225–236. doi:10.1559/152304009788988297
    • (2009) Cartography and Geographic Information Science , vol.36 , Issue.3 , pp. 225-236
    • Huisman, O.1
  • 20
    • 84902751777 scopus 로고    scopus 로고
    • Chapter 6 - response modeling in direct marketing: A data mining-based approach for target selection
    • Zhao Y., Cen Y., (eds), Boston, MA: Academic Press
    • S.H.Javaheri,, M.M.Sepehri,, and B.Teimourpour,, 2014. Chapter 6 - response modeling in direct marketing: A data mining-based approach for target selection. In: Y.Zhao and Y.Cen, eds. Data mining applications with R. Boston, MA: Academic Press, 153–180.
    • (2014) Data mining applications with R , pp. 153-180
    • Javaheri, S.H.1    Sepehri, M.M.2    Teimourpour, B.3
  • 21
    • 34147151231 scopus 로고    scopus 로고
    • Mining minimal distinguishing subsequence patterns with gap constraints
    • X.Ji,, J.Bailey,, and G.Dong,, 2007. Mining minimal distinguishing subsequence patterns with gap constraints. Knowledge and Information Systems, 11 (3), 259–286. doi:10.1007/s10115-006-0038-2
    • (2007) Knowledge and Information Systems , vol.11 , Issue.3 , pp. 259-286
    • Ji, X.1    Bailey, J.2    Dong, G.3
  • 22
    • 84871722288 scopus 로고    scopus 로고
    • A frequency domain approach to characterize and analyze wind speed patterns
    • J.Jung, and K.-S.Tam,, 2013. A frequency domain approach to characterize and analyze wind speed patterns. Applied Energy, 103, 435–443. doi:10.1016/j.apenergy.2012.10.006
    • (2013) Applied Energy , vol.103 , pp. 435-443
    • Jung, J.1    Tam, K.-S.2
  • 23
    • 0034128670 scopus 로고    scopus 로고
    • Wind speed pattern and the available wind power at Basotu, Tanzania
    • R.M.R.Kainkwa,, 2000. Wind speed pattern and the available wind power at Basotu, Tanzania. Renewable Energy, 21 (2), 289–295. doi:10.1016/S0960-1481(00)00076-8
    • (2000) Renewable Energy , vol.21 , Issue.2 , pp. 289-295
    • Kainkwa, R.M.R.1
  • 24
    • 70350625525 scopus 로고    scopus 로고
    • Interactive coordinated multiple-view visualization of biomechanical motion data
    • D.Keefe,, et al., 2009. Interactive coordinated multiple-view visualization of biomechanical motion data. IEEE Transactions on Visualization and Computer Graphics, 15 (6), 1383–1390. doi:10.1109/TVCG.2009.152
    • (2009) IEEE Transactions on Visualization and Computer Graphics , vol.15 , Issue.6 , pp. 1383-1390
    • Keefe, D.1
  • 25
    • 84872233272 scopus 로고    scopus 로고
    • Visualization and visual analysis of multifaceted scientific data: a survey
    • J.Kehrer, and H.Hauser,, 2013. Visualization and visual analysis of multifaceted scientific data: a survey. IEEE Transactions on Visualization and Computer Graphics, 19 (3), 495–513. doi:10.1109/TVCG.2012.110
    • (2013) IEEE Transactions on Visualization and Computer Graphics , vol.19 , Issue.3 , pp. 495-513
    • Kehrer, J.1    Hauser, H.2
  • 26
    • 33845271242 scopus 로고    scopus 로고
    • Finding the most unusual time series subsequence: algorithms and applications
    • E.Keogh,, et al., 2006. Finding the most unusual time series subsequence: algorithms and applications. Knowl Information Systems, 11 (1), 1–27. doi:10.1007/s10115-006-0034-6
    • (2006) Knowl Information Systems , vol.11 , Issue.1 , pp. 1-27
    • Keogh, E.1
  • 27
    • 70349137362 scopus 로고    scopus 로고
    • Geovisualization and time: new opportunities for the space - time cube
    • Dodge M., McDerby M., Turner M., (eds), Chichester: John Wiley & Sons
    • M.J.Kraak,, 2008. Geovisualization and time: new opportunities for the space - time cube. In: M.Dodge, M.McDerby, and M.Turner, eds. Geographic visualization: concepts, tools and applications. Chichester: John Wiley & Sons, 293–306.
    • (2008) Geographic visualization: concepts, tools and applications , pp. 293-306
    • Kraak, M.J.1
  • 28
    • 84964418702 scopus 로고    scopus 로고
    • Proceedings of the 2003 SIAM International Conference on Data Mining (SDM ’03), Cathedral Hill Hotel, San Francisco, CA: SIAM, May
    • H.-C.Kum,, et al., 2003. ApproxMAP: approximate mining of consensus sequential patterns. In: Proceedings of the 2003 SIAM International Conference on Data Mining (SDM ’03). 1–3May 2003 Cathedral Hill Hotel, San Francisco, CA: SIAM 311–315.
    • (2003) ApproxMAP: approximate mining of consensus sequential patterns , pp. 311-315
    • Kum, H.-C.1
  • 29
    • 33646573954 scopus 로고    scopus 로고
    • Sequential pattern mining in multi-databases via multiple alignment
    • H.-C.Kum,, J.Chang,, and W.Wang,, 2006. Sequential pattern mining in multi-databases via multiple alignment. Data Mining and Knowledge Discovery, 12 (2–3), 151–180. doi:10.1007/s10618-005-0017-3
    • (2006) Data Mining and Knowledge Discovery , vol.12 , Issue.2-3 , pp. 151-180
    • Kum, H.-C.1    Chang, J.2    Wang, W.3
  • 30
    • 61649090211 scopus 로고    scopus 로고
    • Short-term prediction of wind farm power: A data mining approach
    • A.Kusiak,, Z.Haiyang,, and S.Zhe,, 2009. Short-term prediction of wind farm power: A data mining approach. IEEE Transactions on Energy Conversion, 24 (1), 125–136. doi:10.1109/TEC.2008.2006552
    • (2009) IEEE Transactions on Energy Conversion , vol.24 , Issue.1 , pp. 125-136
    • Kusiak, A.1    Haiyang, Z.2    Zhe, S.3
  • 31
    • 0033086885 scopus 로고    scopus 로고
    • Short-term prediction of the power production from wind farms
    • L.Landberg,, 1999. Short-term prediction of the power production from wind farms. Journal of Wind Engineering and Industrial Aerodynamics, 80 (1–2), 207–220. doi:10.1016/S0167-6105(98)00192-5
    • (1999) Journal of Wind Engineering and Industrial Aerodynamics , vol.80 , Issue.1-2 , pp. 207-220
    • Landberg, L.1
  • 32
    • 78149358777 scopus 로고    scopus 로고
    • Comprehensive evaluation of ARMA–GARCH(-M) approaches for modeling the mean and volatility of wind speed
    • H.Liu,, E.Erdem,, and J.Shi,, 2011. Comprehensive evaluation of ARMA–GARCH(-M) approaches for modeling the mean and volatility of wind speed. Applied Energy, 88 (3), 724–732. doi:10.1016/j.apenergy.2010.09.028
    • (2011) Applied Energy , vol.88 , Issue.3 , pp. 724-732
    • Liu, H.1    Erdem, E.2    Shi, J.3
  • 33
    • 23144442853 scopus 로고    scopus 로고
    • Patterns of ocean current variability on the West Florida Shelf using the self-organizing map
    • Y.Liu, and R.H.Weisberg,, 2005. Patterns of ocean current variability on the West Florida Shelf using the self-organizing map. Journal of Geophysical Research: Oceans, 110 (C6), C06003. doi:10.1029/2004JC002786
    • (2005) Journal of Geophysical Research: Oceans , vol.110 , Issue.C6 , pp. C06003
    • Liu, Y.1    Weisberg, R.H.2
  • 35
    • 82955207589 scopus 로고    scopus 로고
    • Using map algebra to explain and project spatial patterns of wind energy development in Iowa
    • D.Mann,, C.Lant,, and J.Schoof,, 2012. Using map algebra to explain and project spatial patterns of wind energy development in Iowa. Applied Geography, 34 (0), 219–229. doi:10.1016/j.apgeog.2011.11.008
    • (2012) Applied Geography , vol.34 , pp. 219-229
    • Mann, D.1    Lant, C.2    Schoof, J.3
  • 36
    • 35348877883 scopus 로고    scopus 로고
    • One-hour-ahead wind speed prediction using a Bayesian methodology
    • New York: Institute of Electrical and Electronics Engineers (IEEE)
    • M.S.Miranda, and R.W.Dunn,, 2006. One-hour-ahead wind speed prediction using a Bayesian methodology. In: 2006 Power engineering society general meeting, 18–22 June Montreal, QC. New York: Institute of Electrical and Electronics Engineers (IEEE), 3557–3562.
    • (2006) 2006 Power engineering society general meeting , pp. 3557-3562
    • Miranda, M.S.1    Dunn, R.W.2
  • 37
    • 78449237333 scopus 로고    scopus 로고
    • Extracting promising sequential patterns from RFID data using the LCM sequence
    • Setchi R., (ed), Berlin Heidelberg: Springer
    • T.Nakahara,, T.Uno,, and K.Yada,, 2010. Extracting promising sequential patterns from RFID data using the LCM sequence. In: R.Setchi, et al. eds. Knowledge-based and intelligent information and engineering systems. Berlin Heidelberg: Springer, 244–253.
    • (2010) Knowledge-based and intelligent information and engineering systems , pp. 244-253
    • Nakahara, T.1    Uno, T.2    Yada, K.3
  • 38
    • 38049146047 scopus 로고    scopus 로고
    • Geographic visualization
    • Kerren A., Ebert A., Meyer J., (eds), Berlin, Heidelberg: Springer
    • M.Nöllenburg,, 2007. Geographic visualization. In: A.Kerren, A.Ebert, and J.Meyer, eds. Human-centered visualization environments. Berlin, Heidelberg: Springer, 257–294.
    • (2007) Human-centered visualization environments , pp. 257-294
    • Nöllenburg, M.1
  • 39
    • 84455199746 scopus 로고    scopus 로고
    • Exploring visitor movement patterns in natural recreational areas
    • D.Orellana,, et al., 2012. Exploring visitor movement patterns in natural recreational areas. Tourism Management, 33 (3), 672–682. doi:10.1016/j.tourman.2011.07.010
    • (2012) Tourism Management , vol.33 , Issue.3 , pp. 672-682
    • Orellana, D.1
  • 40
    • 3042582457 scopus 로고    scopus 로고
    • Analysis of height variations of sodar-derived wind speeds in Northern Spain
    • I.A.Pérez,, et al., 2004. Analysis of height variations of sodar-derived wind speeds in Northern Spain. Journal of Wind Engineering and Industrial Aerodynamics, 92 (10), 875–894. doi:10.1016/j.jweia.2004.05.002
    • (2004) Journal of Wind Engineering and Industrial Aerodynamics , vol.92 , Issue.10 , pp. 875-894
    • Pérez, I.A.1
  • 42
    • 18544412717 scopus 로고    scopus 로고
    • Variability in satellite winds over the Benguela upwelling system during 1999–2000
    • C.M.Risien,, et al. 2004. Variability in satellite winds over the Benguela upwelling system during 1999–2000. Journal of Geophysical Research: Oceans, 109, 1–15. doi:10.1029/2003JC001880
    • (2004) Journal of Geophysical Research: Oceans , vol.109 , pp. 1-15
    • Risien, C.M.1
  • 43
    • 84882545823 scopus 로고    scopus 로고
    • Chapter 8 - exploratory visualization with multiple linked views
    • Dykes J., MacEachren A.M., Kraak M.-J., (eds), Oxford: Elsevier
    • J.C.Roberts,, 2005. Chapter 8 - exploratory visualization with multiple linked views. In: J.Dykes, A.M.MacEachren, and M.-J.Kraak, eds. Exploring geovisualization. Oxford: Elsevier, 159–180.
    • (2005) Exploring geovisualization , pp. 159-180
    • Roberts, J.C.1
  • 44
    • 34948830686 scopus 로고    scopus 로고
    • Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization, CMV 2007, Zurich, Switzerland: July
    • J.C.Roberts,, 2007. State of the art: coordinated & multiple views in exploratory visualization. Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization, CMV 2007, 2July 2007 Zurich, Switzerland, 61–71.
    • (2007) State of the art: coordinated & multiple views in exploratory visualization , pp. 61-71
    • Roberts, J.C.1
  • 46
    • 65649151475 scopus 로고    scopus 로고
    • Preliminary study of long-term wind characteristics of the Mexican Yucatán Peninsula
    • R.Soler-Bientz,, S.Watson,, and D.Infield,, 2009. Preliminary study of long-term wind characteristics of the Mexican Yucatán Peninsula. Energy Conversion and Management, 50 (7), 1773–1780. doi:10.1016/j.enconman.2009.03.018
    • (2009) Energy Conversion and Management , vol.50 , Issue.7 , pp. 1773-1780
    • Soler-Bientz, R.1    Watson, S.2    Infield, D.3
  • 47
    • 69549097483 scopus 로고    scopus 로고
    • Sliding window-based frequent pattern mining over data streams
    • S.K.Tanbeer,, et al., 2009. Sliding window-based frequent pattern mining over data streams. Information Sciences, 179 (22), 3843–3865. doi:10.1016/j.ins.2009.07.012
    • (2009) Information Sciences , vol.179 , Issue.22 , pp. 3843-3865
    • Tanbeer, S.K.1
  • 51
    • 68749095074 scopus 로고    scopus 로고
    • Circulation features in the Japan/East Sea related to statistically obtained wind patterns in the warm season
    • O.Trusenkova,, A.Nikitin,, and V.Lobanov,, 2009. Circulation features in the Japan/East Sea related to statistically obtained wind patterns in the warm season. Journal of Marine Systems, 78 (2), 214–225. doi:10.1016/j.jmarsys.2009.02.019
    • (2009) Journal of Marine Systems , vol.78 , Issue.2 , pp. 214-225
    • Trusenkova, O.1    Nikitin, A.2    Lobanov, V.3
  • 52
    • 84907814405 scopus 로고    scopus 로고
    • Visual mining of moving flock patterns in large spatio-temporal data sets using a frequent pattern approach
    • U.Turdukulov,, et al., 2014. Visual mining of moving flock patterns in large spatio-temporal data sets using a frequent pattern approach. International Journal of Geographical Information Science, 28 (10), 2013–2029. doi:10.1080/13658816.2014.889834
    • (2014) International Journal of Geographical Information Science , vol.28 , Issue.10 , pp. 2013-2029
    • Turdukulov, U.1
  • 53
    • 77953564323 scopus 로고    scopus 로고
    • Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, Chicago, Illinois: ACM, August
    • T.Uno,, M.Kiyomi,, and H.Arimura,, 2005. LCM ver.3: collaboration of array, bitmap and prefix tree for frequent itemset mining. In: Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, 21–24August 2005 Chicago, Illinois: ACM. 77–86.
    • (2005) LCM ver.3: collaboration of array, bitmap and prefix tree for frequent itemset mining , pp. 77-86
    • Uno, T.1    Kiyomi, M.2    Arimura, H.3
  • 54
    • 84896872994 scopus 로고    scopus 로고
    • Wind speed estimation using multilayer perceptron
    • R.Velo,, P.López,, and F.Maseda,, 2014. Wind speed estimation using multilayer perceptron. Energy Conversion and Management, 81, 1–9. doi:10.1016/j.enconman.2014.02.017
    • (2014) Energy Conversion and Management , vol.81 , pp. 1-9
    • Velo, R.1    López, P.2    Maseda, F.3
  • 55
    • 31444449276 scopus 로고    scopus 로고
    • Efficient calendar based temporal association rule
    • K.Verma, and O.P.Vyas,, 2005. Efficient calendar based temporal association rule. SIGMOD Record, 34 (3), 63–70. doi:10.1145/1084805
    • (2005) SIGMOD Record , vol.34 , Issue.3 , pp. 63-70
    • Verma, K.1    Vyas, O.P.2
  • 56
    • 84900602222 scopus 로고    scopus 로고
    • 2014 International Conference on Big Data and Smart Computing (BIGCOMP), Bangkok, Thailand: Chatrium Hotel Riverside, January
    • Z.Wang, and X.Yuan,, 2014. Urban trajectory timeline visualization. In: 2014 International Conference on Big Data and Smart Computing (BIGCOMP), 15–17January 2014 Bangkok, Thailand: Chatrium Hotel Riverside, 13–18.
    • (2014) Urban trajectory timeline visualization , pp. 13-18
    • Wang, Z.1    Yuan, X.2
  • 57
    • 84924691909 scopus 로고    scopus 로고
    • Mining frequent spatio-temporal patterns in wind speed and direction
    • Huerta J., Schade S., Granell C., (eds), Cham: Springer International Publishing
    • N.Yusof,, et al., 2014. Mining frequent spatio-temporal patterns in wind speed and direction. In: J.Huerta, S.Schade, and C.Granell, eds. Connecting a digital Europe through location and place. Cham: Springer International Publishing, 143–161.
    • (2014) Connecting a digital Europe through location and place , pp. 143-161
    • Yusof, N.1
  • 58
    • 77955634103 scopus 로고    scopus 로고
    • VOGUE: A variable order hidden Markov model with duration based on frequent sequence mining
    • M.J.Zaki,, C.D.Carothers,, and B.K.Szymanski,, 2010. VOGUE: A variable order hidden Markov model with duration based on frequent sequence mining. ACM Transactions Knowl Discovery Data, 4 (1), 1–31. doi:10.1145/1644873
    • (2010) ACM Transactions Knowl Discovery Data , vol.4 , Issue.1 , pp. 1-31
    • Zaki, M.J.1    Carothers, C.D.2    Szymanski, B.K.3
  • 59
    • 68749106829 scopus 로고    scopus 로고
    • VDM-RS: A visual data mining system for exploring and classifying remotely sensed images
    • J.Zhang,, L.Gruenwald,, and M.Gertz,, 2009. VDM-RS: A visual data mining system for exploring and classifying remotely sensed images. Computers & Geosciences, 35 (9), 1827–1836. doi:10.1016/j.cageo.2009.02.006
    • (2009) Computers & Geosciences , vol.35 , Issue.9 , pp. 1827-1836
    • Zhang, J.1    Gruenwald, L.2    Gertz, M.3
  • 60
    • 84906536951 scopus 로고    scopus 로고
    • Visual analysis design to support research into movement and use of space in Tallinn: A case study
    • Q.Zhang,, et al., 2013. Visual analysis design to support research into movement and use of space in Tallinn: A case study. Information Visualization, 13 (3), 213–231.
    • (2013) Information Visualization , vol.13 , Issue.3 , pp. 213-231
    • Zhang, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.