메뉴 건너뛰기




Volumn 28, Issue 10, 2014, Pages 2013-2029

Visual mining of moving flock patterns in large spatio-temporal data sets using a frequent pattern approach

Author keywords

flock patterns; frequent pattern mining; Space Time Cube; spatio temporal data sets; tropical cyclones; visual mining

Indexed keywords

ALGORITHM; DATA MINING; DATA SET; SPATIOTEMPORAL ANALYSIS; STORM TRACK; TROPICAL CYCLONE;

EID: 84907814405     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2014.889834     Document Type: Article
Times cited : (22)

References (56)
  • 1
    • 84907824009 scopus 로고
    • Agrawal, R. and Srikant, R., 1994. Fast algorithms for mining association rules. In: J.B. Bocca, M. Jarke, and C. Zaniolo, eds. VLDB’94, Proceedings of the 20th international conference very large data bases, 12–15 September, Santiago de Chile. Morgan Kaufmann, 487–499. ISBN:1-55860-153-8.
    • (1994)
    • Agrawal, R.1    Srikant, R.2
  • 2
    • 79957934163 scopus 로고    scopus 로고
    • A conceptual framework and taxonomy of techniques for analyzing movement
    • Andrienko, G., et al., 2011. A conceptual framework and taxonomy of techniques for analyzing movement. Journal of Visual Languages & Computing, 22, 213–232. doi:10.1016/j.jvlc.2011.02.003
    • (2011) Journal of Visual Languages & Computing , vol.22 , pp. 213-232
    • Andrienko, G.1
  • 3
    • 0036401943 scopus 로고    scopus 로고
    • Ballantyne, J. and Long, D., 2002. A multidecadal study of the number of Antarctic icebergs using scatterometer data. In: Proceedings of the international geoscience and remote sensing symposium, Vol. 5, 24–28 June, Toronto, ON. IEEE Publications, 3029–3031.
    • (2002)
    • Ballantyne, J.1    Long, D.2
  • 4
    • 0032091573 scopus 로고    scopus 로고
    • Efficiently mining long patterns from databases
    • Bayardo, R., Jr., 1998. Efficiently mining long patterns from databases. ACM Sigmod Record, 27, 85–93. doi:10.1145/276305.276313
    • (1998) ACM Sigmod Record , vol.27 , pp. 85-93
    • Bayardo, R.1
  • 5
    • 84907824007 scopus 로고    scopus 로고
    • Bayardo, R., Jr., Goethals, B., and Zaki, M., eds., 2004. FIMI 04, proceedings of the IEEE ICDM workshopon frequent itemset mining implementations. In: Proceedings of the IEEE ICDM workshop on frequent itemset mining implementations, 1 November, Brighton. Aachen: CEUR-WS.org, 126.
    • (2004)
    • Bayardo, R.1    Goethals, B.2    Zaki, M.3
  • 6
    • 84867997159 scopus 로고    scopus 로고
    • Reporting flock patterns
    • Benkert, M., et al., 2008. Reporting flock patterns. Computational Geometry, 41, 111–125. doi:10.1016/j.comgeo.2007.10.003
    • (2008) Computational Geometry , vol.41 , pp. 111-125
    • Benkert, M.1
  • 7
    • 84907824006 scopus 로고    scopus 로고
    • Borgelt, C., 2005. An implementation of the FP-growth algorithm. In: Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, 21–24 August, Chicago, IL. New York: ACM, 5.
    • (2005)
    • Borgelt, C.1
  • 8
    • 0036606530 scopus 로고    scopus 로고
    • A framework for generating network-based moving objects
    • Brinkhoff, T., 2002. A framework for generating network-based moving objects. GeoInformatica, 6, 153–180. doi:10.1023/A:1015231126594
    • (2002) GeoInformatica , vol.6 , pp. 153-180
    • Brinkhoff, T.1
  • 9
    • 84907824005 scopus 로고    scopus 로고
    • Brinkhoff, T., 2011. Network-based generator of moving objects [online]. Available from: http://iapg.jade-hs.de/personen/brinkhoff/generator/faq.php [Accessed 26 February 2014].
    • (2011)
    • Brinkhoff, T.1
  • 10
    • 77957722495 scopus 로고    scopus 로고
    • A QuikSCAT climatology of tropical cyclone size
    • Chavas, D.R. and Emanuel, K.A., 2010. A QuikSCAT climatology of tropical cyclone size. Geophysical Research Letters, 37. doi:10.1029/2010GL044558
    • (2010) Geophysical Research Letters , vol.37
    • Chavas, D.R.1    Emanuel, K.A.2
  • 11
    • 1842453293 scopus 로고    scopus 로고
    • Chen, R., et al., 2001. Mining association rules in analysis of transcription factors essential to gene expressions. In: Proceedings of the Atlantic symposium on computational biology, and genome information systems & technology, 15–17 March, Durham, NC.
    • (2001)
    • Chen, R.1
  • 12
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expression databases for association rules
    • Creighton, C. and Hanash, S., 2003. Mining gene expression databases for association rules. Bioinformatics, 19, 79–86. doi:10.1093/bioinformatics/19.1.79
    • (2003) Bioinformatics , vol.19 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 13
    • 39449126842 scopus 로고    scopus 로고
    • Real-time moose tracking: an internet based mapping application using GPS/GSM-collars in Sweden
    • Dettki, H., Ericsson, G., and Edenius, L., 2004. Real-time moose tracking: an internet based mapping application using GPS/GSM-collars in Sweden. Alces, 40, 13–21.
    • (2004) Alces , vol.40 , pp. 13-21
    • Dettki, H.1    Ericsson, G.2    Edenius, L.3
  • 14
    • 84944322811 scopus 로고    scopus 로고
    • Folino, G. and Spezzano, G., 2002. An adaptive flocking algorithm for spatial clustering. In: J.J. Merelo Guervós, et al., eds. Parallel problem solving from nature PPSN VII, 7–11 September, Granada. Springer, 924–933. ISBN:978-3-540-45712-1 (Online).
    • (2002)
    • Folino, G.1    Spezzano, G.2
  • 17
    • 84907824002 scopus 로고    scopus 로고
    • Goethals, B., 2003. Survey on frequent pattern mining. Manuscript, 1–43. Available from: http://win.ua.ac.be/~adrem/bibrem/pubs/fpm_survey.pdf [Accessed 21 February 2014].
    • (2003)
    • Goethals, B.1
  • 18
    • 84907824001 scopus 로고    scopus 로고
    • Goethals, B., 2004. The Fimi’04 homepage. Available from: http://fimi.cs.helsinki.fi/ [Accessed 21 February 2014].
    • (2004)
    • Goethals, B.1
  • 19
    • 84907824000 scopus 로고    scopus 로고
    • Goethals, B. and Zaki, M., eds., 2003. FIMI 03. Proceedings of the ICDM 2003 workshop on frequent itemset mining implementations, 19 December, Melbourne, FL, 90. CEUR Workshop Proceedings.
    • (2003)
    • Goethals, B.1    Zaki, M.2
  • 20
    • 27544478009 scopus 로고    scopus 로고
    • Advances in frequent itemset mining implementations: report on FIMI’03
    • Goethals, B. and Zaki, M., 2004. Advances in frequent itemset mining implementations: report on FIMI’03. ACM SIGKDD Explorations Newsletter, 6, 109–117. doi:10.1145/1007730.1007744
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , pp. 109-117
    • Goethals, B.1    Zaki, M.2
  • 21
    • 84907823999 scopus 로고    scopus 로고
    • Grahne, G. and Zhu, J., 2003. High performance mining of maximal frequent itemsets. In: Proceedings of the 6th international workshop on high performance data mining, May, San Francisco, CA.
    • (2003)
    • Grahne, G.1    Zhu, J.2
  • 22
    • 34547398522 scopus 로고    scopus 로고
    • Gudmundsson, J. and van Kreveld, M., 2006. Computing longest duration flocks in trajectory data. In: S. Nittel, ed. Proceedings of the 14th annual ACM international symposium on Advances in geographic information systems, 10–11 November, Arlington, VA. New York: ACM, 42.
    • (2006)
    • Gudmundsson, J.1    van Kreveld, M.2
  • 23
    • 19544369671 scopus 로고    scopus 로고
    • Gudmundsson, J., Van Kreveld, M., and Speckmann, B., 2004. Efficient detection of motion patterns in spatio-temporal data sets. In: Proceedings of the 12th annual ACM international workshop on geographic information systems, 12–13 November, Arlington, VA. New York: ACM, 250–257.
    • (2004)
    • Gudmundsson, J.1    Van Kreveld, M.2    Speckmann, B.3
  • 24
    • 34547335088 scopus 로고    scopus 로고
    • Frequent pattern mining: current status and future directions
    • Han, J., et al., 2007. Frequent pattern mining: current status and future directions. Data Mining and Knowledge Discovery, 15, 55–86. doi:10.1007/s10618-006-0059-1
    • (2007) Data Mining and Knowledge Discovery , vol.15 , pp. 55-86
    • Han, J.1
  • 26
    • 0031168386 scopus 로고    scopus 로고
    • Han, J., Koperski, K., and Stefanovic, N., 1997. GeoMiner: a system prototype for spatial data mining. In: J. Peckham, ed. Proceedings of the 1997 ACM SIGMOD international conference on Management of data, 13–15 May, Tucson, AZ. ACM Press, 553–556.
    • (1997)
    • Han, J.1    Koperski, K.2    Stefanovic, N.3
  • 27
    • 0003372359 scopus 로고    scopus 로고
    • Mining frequent patterns by pattern-growth: methodology and implications
    • Han, J. and Pei, J., 2000. Mining frequent patterns by pattern-growth: methodology and implications. ACM SIGKDD Explorations Newsletter, 2, 14–20. doi:10.1145/380995.381002
    • (2000) ACM SIGKDD Explorations Newsletter , vol.2 , pp. 14-20
    • Han, J.1    Pei, J.2
  • 28
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: a frequent-pattern tree approach
    • Han, J., et al., 2004. Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8, 53–87. doi:10.1023/B:DAMI.0000005258.31418.83
    • (2004) Data Mining and Knowledge Discovery , vol.8 , pp. 53-87
    • Han, J.1
  • 29
    • 84907823995 scopus 로고    scopus 로고
    • Iwase, S. and Saito, H., 2002. Tracking soccer player using multiple views. In: Proceedings of the IAPR workshop on machine vision applications (MVA02), 11–13 December, Nara, 102–105. ISBN:4-901122-02-9.
    • (2002)
    • Iwase, S.1    Saito, H.2
  • 31
    • 84859203289 scopus 로고    scopus 로고
    • Discovery of convoys in trajectory databases
    • Jeung, H., et al., 2008. Discovery of convoys in trajectory databases. Proceedings of the VLDB Endowment, 1, 1068–1080.
    • (2008) Proceedings of the VLDB Endowment , vol.1 , pp. 1068-1080
    • Jeung, H.1
  • 32
    • 26444541854 scopus 로고    scopus 로고
    • On discovering moving clusters in spatio-temporal data
    • Kalnis, P., Mamoulis, N., and Bakiras, S., 2005. On discovering moving clusters in spatio-temporal data. In: C.B. Medeiros, M.J. Egenhofer, and E. Bertino, eds. Proceedings of the 9th international symposium on Advances in spatial and temporal databases, SSTD 2005, 22–24 August, Angra dos Reis. Springer, 364–381. ISBN:978-3-540-28127-6 (Print), 978-3-540-31904-7 (Online).
    • (2005) Advances in spatial and temporal databases , pp. 364-381
    • Kalnis, P.1    Mamoulis, N.2    Bakiras, S.3
  • 33
    • 70349153271 scopus 로고    scopus 로고
    • Beyond exploratory visualization of space time paths
    • 2nd ed, London: Taylor & Francis
    • Kraak, M. and Huisman, O., 2009. Beyond exploratory visualization of space time paths. In: H.J. Miller and J. Han, eds. Geographic data mining and knowledge discovery. 2nd ed. London: Taylor & Francis, 431–443.
    • (2009) Geographic data mining and knowledge discovery , pp. 431-443
    • Kraak, M.1    Huisman, O.2
  • 34
    • 84907823994 scopus 로고    scopus 로고
    • Kraak, M. and Koussoulakou, A., 2004. A visualization environment for the space – time cube. In: P. Fisher, ed., Proceedings of the SDH 2004: proceedings of the 11th international symposium on spatial data handling: advances in spatial data handling II, 23–25 August, Zurich. Berlin: Springer, 189–200.
    • (2004)
    • Kraak, M.1    Koussoulakou, A.2
  • 35
    • 84907823993 scopus 로고    scopus 로고
    • Krajzewicz, D., et al., 2002. SUMO (Simulation of Urban MObility). In: A. Al-Akaidi, ed. Proceedings of the 4th Middle East symposium on simulation and modelling, September, Sharjah. Erlangen: SCS European Publishing House, 183–187.
    • (2002)
    • Krajzewicz, D.1
  • 36
    • 21544463174 scopus 로고    scopus 로고
    • Finding REMO – detecting relative motion patterns in geospatial lifelines
    • Laube, P., Kreveld, M., and Imfeld, S., 2005. Finding REMO – detecting relative motion patterns in geospatial lifelines. In: P.F. Fisher, ed. Developments in spatial data handling. Berlin: Springer-Verlag, 201–215.
    • (2005) Developments in spatial data handling , pp. 201-215
    • Laube, P.1    Kreveld, M.2    Imfeld, S.3
  • 37
    • 0036783840 scopus 로고    scopus 로고
    • Path detection in video surveillance
    • Makris, D. and Ellis, T., 2002. Path detection in video surveillance. Image and Vision Computing, 20, 895–903. doi:10.1016/S0262-8856(02)00098-7
    • (2002) Image and Vision Computing , vol.20 , pp. 895-903
    • Makris, D.1    Ellis, T.2
  • 38
    • 84861219682 scopus 로고    scopus 로고
    • Microsoft Research Asia, 2011. GeoLife Gps Trajectories. Available from: http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/ [Accessed 21 February 2014].
    • (2011) GeoLife Gps Trajectories
  • 39
    • 84907846263 scopus 로고    scopus 로고
    • Mid 2002 Project, 2011. Mobility in Germany 2002. Available from: http://daten.clearingstelle-verkehr.de/196/ [Accessed 21 February 2014].
    • (2011) Mobility in Germany 2002
  • 41
    • 44649117401 scopus 로고    scopus 로고
    • LCM over ZBDDS: fast generation of very large-scale frequent itemsets using a compact graph-based representation
    • Minato, S., Uno, T., and Arimura, H., 2008. LCM over ZBDDS: fast generation of very large-scale frequent itemsets using a compact graph-based representation. In: T. Washio, et al., eds. Advances in knowledge discovery and data mining, Berlin: Springer-Verlag, 234–246.
    • (2008) Advances in knowledge discovery and data mining , pp. 234-246
    • Minato, S.1    Uno, T.2    Arimura, H.3
  • 43
    • 77952367051 scopus 로고    scopus 로고
    • Pan, F., et al., 2003. CARPENTER: finding closed patterns in long biological datasets. In: L. Getoor, et al., eds. Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, 24–27 August, Washington, DC. New York: ACM, 637–642.
    • (2003)
    • Pan, F.1
  • 44
    • 5444270612 scopus 로고    scopus 로고
    • Pan, F., et al., 2004. COBBLER: combining column and row enumeration for closed pattern discovery. In: Proceedings of the scientific and statistical database management, 2004. 16th international conference, 21–23 June, Santorini Island. Washington, DC: IEEE Computer Society, 21–30. ISBN:0-7695-2146-0.
    • (2004)
    • Pan, F.1
  • 45
    • 84911977993 scopus 로고    scopus 로고
    • Discovering frequent closed itemsets for association rules
    • Pasquier, N., et al., 1999. Discovering frequent closed itemsets for association rules. In: C. Beeri and P. Buneman, eds. Database Theory – ICDT’99, Lecture Notes in Computer Science 1540. Berlin: Springer, 398–416. Available from: http://link.springer.com/chapter/10.1007/3-540-49257-7_25
    • (1999) Database Theory – ICDT’99 , vol.1540 , pp. 398-416
    • Pasquier, N.1
  • 46
    • 33846950041 scopus 로고    scopus 로고
    • Piciarelli, C., Foresti, G., and Snidara, L., 2006. Trajectory clustering and its applications for video surveillance. In: Proceedings of the advanced video and signal based surveillance, 2005. AVSS 2005. IEEE conference, 15–16 September, Como. Washington, DC: IEEE Computer Society, 40–45.
    • (2006)
    • Piciarelli, C.1    Foresti, G.2    Snidara, L.3
  • 47
    • 77951204214 scopus 로고    scopus 로고
    • Algorithms for discovery of spatial co-orientation patterns from images
    • Shan, M. and Wei, L., 2010. Algorithms for discovery of spatial co-orientation patterns from images. Expert Systems with Applications, 37, 5795–5802. doi:10.1016/j.eswa.2010.02.028
    • (2010) Expert Systems with Applications
    • Shan, M.1    Wei, L.2
  • 48
    • 84893615767 scopus 로고    scopus 로고
    • Sumo Project, 2011. TAPAS Cologne scenario. Available from: http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Data/Scenarios/TAPASCologne [Accessed 21 February 2014].
    • (2011) TAPAS Cologne scenario
  • 49
    • 84907823988 scopus 로고    scopus 로고
    • Uno, T., Kiyomi, M., and Arimura, H., 2004. LCM ver. 2: efficient mining algorithms for frequent/closed/maximal itemsets. In: Proceedings of the IEEE ICDM04 workshop FIMI04 (International conference on data mining, frequent itemset mining implementations), 1 November, Brighton.
    • (2004)
    • Uno, T.1    Kiyomi, M.2    Arimura, H.3
  • 50
    • 77953564323 scopus 로고    scopus 로고
    • Uno, T., Kiyomi, M., and Arimura, H., 2005. Lcm ver. 3: collaboration of array, bitmap and prefix tree for frequent itemset mining. In: Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, 21–24 August, Chicago, IL. New York: ACM, 77–86.
    • (2005)
    • Uno, T.1    Kiyomi, M.2    Arimura, H.3
  • 51
    • 84907823986 scopus 로고    scopus 로고
    • Varschen, C. and Wagner, P. 2006, Mikroskopische Modellierung der Personenverkehrsnachfrage auf Basis von Zeitverwendungstagebüchern. Vortrag auf dem, 7.
    • (2006)
    • Varschen, C.1    Wagner, P.2
  • 52
    • 74049140321 scopus 로고    scopus 로고
    • Vieira, M., Bakalov, P., and Tsotras, V. 2009, On-line discovery of flock patterns in spatio-temporal data. In: D. Agrawa, et al., eds. Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, 4–6 November, Seattle, WA. New York: ACM, 286–295.
    • (2009)
    • Vieira, M.1    Bakalov, P.2    Tsotras, V.3
  • 53
    • 84859154489 scopus 로고    scopus 로고
    • Finding moving flock patterns among pedestrians through collective coherence
    • Wachowicz, M., et al., 2011. Finding moving flock patterns among pedestrians through collective coherence. International Journal of Geographical Information Science, 25, 1849–1864. doi:10.1080/13658816.2011.561209
    • (2011) International Journal of Geographical Information Science
    • Wachowicz, M.1
  • 54
    • 79951766548 scopus 로고    scopus 로고
    • A taxonomy of collective phenomena
    • Wood, Z. and Galton, A., 2009. A taxonomy of collective phenomena. Applied Ontology, 4, 267–292.
    • (2009) Applied Ontology , vol.4 , pp. 267-292
    • Wood, Z.1    Galton, A.2
  • 55
    • 51349100781 scopus 로고    scopus 로고
    • Yang, Y., Zhang, J., and Yang, J., 2008. Grid-based hierarchical spatial clustering algorithm in presence of obstacle and constraints. In: J. Ni, et al., eds. Proceedings of the 2008 international conference on internet computing in science and engineering, 28–29 January, Harbin. Seattle, WA: IEEE Computer Society, 383–388.
    • (2008)
    • Yang, Y.1    Zhang, J.2    Yang, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.