메뉴 건너뛰기




Volumn 230, Issue 2, 2016, Pages 291-302

Two-stage feature selection for bearing fault diagnosis based on dual-tree complex wavelet transform and empirical mode decomposition

Author keywords

distance evaluation; Dual tree complex wavelet transform; empirical mode decomposition; genetic algorithm; optimal feature selection

Indexed keywords

BEARINGS (MACHINE PARTS); CLASSIFICATION (OF INFORMATION); ELECTRIC FAULT CURRENTS; FAILURE ANALYSIS; FAULT DETECTION; GENETIC ALGORITHMS; MOTION COMPENSATION; NEAREST NEIGHBOR SEARCH; PARTIAL DISCHARGES; ROLLER BEARINGS; SIGNAL PROCESSING; TIME DOMAIN ANALYSIS; TREES (MATHEMATICS); WAVELET DECOMPOSITION; WAVELET TRANSFORMS;

EID: 84954271626     PISSN: 09544062     EISSN: 20412983     Source Type: Journal    
DOI: 10.1177/0954406215573976     Document Type: Article
Times cited : (37)

References (32)
  • 2
    • 79954538160 scopus 로고    scopus 로고
    • A probabilistic fault detection approach: Application to bearing fault detection
    • Zhang B, Sconyers C, Byington C, et al. A probabilistic fault detection approach: application to bearing fault detection. IEEE Trans Industrial Electron 2008; 58: 2011-2018.
    • (2008) IEEE Trans Industrial Electron , vol.58 , pp. 2011-2018
    • Zhang, B.1    Sconyers, C.2    Byington, C.3
  • 3
    • 0012020346 scopus 로고    scopus 로고
    • Wavelet analysis and envelope detection for rolling element bearing fault diagnosis - Their effectiveness and flexibilities
    • Tse PW, Peng YH, Yam R,. Wavelet analysis and envelope detection for rolling element bearing fault diagnosis-their effectiveness and flexibilities. J Vib Acoust 2001; 123: 303-310.
    • (2001) J Vib Acoust , vol.123 , pp. 303-310
    • Tse, P.W.1    Peng, Y.H.2    Yam, R.3
  • 4
    • 80052802541 scopus 로고    scopus 로고
    • Identification of bearing faults using time domain zero-crossings
    • William PE, Hoffman MW,. Identification of bearing faults using time domain zero-crossings. Mech Syst Signal Process 2011; 25: 3078-3088.
    • (2011) Mech Syst Signal Process , vol.25 , pp. 3078-3088
    • William, P.E.1    Hoffman, M.W.2
  • 5
    • 84876248148 scopus 로고    scopus 로고
    • Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks
    • Prieto MD, Cirrincione G, Espinosa AG, et al. Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks. IEEE Trans Industrial Electron 2013; 60: 3398-3407.
    • (2013) IEEE Trans Industrial Electron , vol.60 , pp. 3398-3407
    • Prieto, M.D.1    Cirrincione, G.2    Espinosa, A.G.3
  • 6
    • 84887125031 scopus 로고    scopus 로고
    • Motor bearing fault diagnosis using trace ratio linear discriminant analysis
    • Jin X, Zhao M, Chow TWS, et al. Motor bearing fault diagnosis using trace ratio linear discriminant analysis. IEEE Trans Industrial Electron 2014; 61: 2441-2451.
    • (2014) IEEE Trans Industrial Electron , vol.61 , pp. 2441-2451
    • Jin, X.1    Zhao, M.2    Chow, T.W.S.3
  • 7
    • 68249159452 scopus 로고    scopus 로고
    • Diagnosis of broken-bar fault in induction machines using discrete wavelet transform without slip estimation
    • Kia SH, Henao H, Capolino GA,. Diagnosis of broken-bar fault in induction machines using discrete wavelet transform without slip estimation. IEEE Trans Industrial Appl 2009; 45: 1395-1404.
    • (2009) IEEE Trans Industrial Appl , vol.45 , pp. 1395-1404
    • Kia, S.H.1    Henao, H.2    Capolino, G.A.3
  • 8
    • 80051711986 scopus 로고    scopus 로고
    • Fault diagnosis in industrial induction machines through discrete wavelet transform
    • Bouzida A, Touhami O, Ibtiouen R, et al. Fault diagnosis in industrial induction machines through discrete wavelet transform. IEEE Trans Industrial Electron 2011; 58: 1395-1404.
    • (2011) IEEE Trans Industrial Electron , vol.58 , pp. 1395-1404
    • Bouzida, A.1    Touhami, O.2    Ibtiouen, R.3
  • 9
    • 0029777592 scopus 로고    scopus 로고
    • Noise reduction using an undecimated discrete wavelet transform
    • Lang M, Gou H, Odegard JE, et al. Noise reduction using an undecimated discrete wavelet transform. IEEE Signal Process Lett 1996; 3: 10-12.
    • (1996) IEEE Signal Process Lett , vol.3 , pp. 10-12
    • Lang, M.1    Gou, H.2    Odegard, J.E.3
  • 10
    • 0346876959 scopus 로고    scopus 로고
    • Image processing with complex wavelets
    • Kingsbury NG,. Image processing with complex wavelets. Philos Trans R Soc Lond 1999; 357: 2543-2560.
    • (1999) Philos Trans R Soc Lond , vol.357 , pp. 2543-2560
    • Kingsbury, N.G.1
  • 12
    • 84883296618 scopus 로고    scopus 로고
    • Investigation of vibration signatures for multiple fault diagnosis in variable frequency drives using complex wavelets
    • Seshadrinath J, Singh B, Panigrahi BK,. Investigation of vibration signatures for multiple fault diagnosis in variable frequency drives using complex wavelets. IEEE Trans Power Electron 2014; 29: 936-944.
    • (2014) IEEE Trans Power Electron , vol.29 , pp. 936-944
    • Seshadrinath, J.1    Singh, B.2    Panigrahi, B.K.3
  • 13
    • 84897486841 scopus 로고    scopus 로고
    • Vibration analysis based inter-turn fault diagnosis in induction machines
    • Seshadrinath J, Singh B, Panigrahi BK,. Vibration analysis based inter-turn fault diagnosis in induction machines. IEEE Trans Industrial Informat 2013; 10: 340-350.
    • (2013) IEEE Trans Industrial Informat , vol.10 , pp. 340-350
    • Seshadrinath, J.1    Singh, B.2    Panigrahi, B.K.3
  • 15
    • 33947309561 scopus 로고    scopus 로고
    • Hilbert-huang transform-based vibration signal analysis for machine health monitoring
    • Yan R, Gao RX,. Hilbert-huang transform-based vibration signal analysis for machine health monitoring. IEEE Trans Instrum Meas 2006; 55: 2320-2329.
    • (2006) IEEE Trans Instrum Meas , vol.55 , pp. 2320-2329
    • Yan, R.1    Gao, R.X.2
  • 16
    • 84855426522 scopus 로고    scopus 로고
    • Internal leakage detection in hydraulic actuators using empirical mode decomposition and Hilbert spectrum
    • Goharrizi AY, Sepehri N,. Internal leakage detection in hydraulic actuators using empirical mode decomposition and Hilbert spectrum. IEEE Trans Instrum Meas 2012; 61: 368-378.
    • (2012) IEEE Trans Instrum Meas , vol.61 , pp. 368-378
    • Goharrizi, A.Y.1    Sepehri, N.2
  • 17
    • 34249751601 scopus 로고    scopus 로고
    • Bearing fault diagnosis using FFT of intrinsic model functions in Hilbert-Huang transform
    • Rai VK, Mohanty AR,. Bearing fault diagnosis using FFT of intrinsic model functions in Hilbert-Huang transform. Mech Syst Signal Process 2007; 21: 2607-2615.
    • (2007) Mech Syst Signal Process , vol.21 , pp. 2607-2615
    • Rai, V.K.1    Mohanty, A.R.2
  • 18
    • 33646519024 scopus 로고    scopus 로고
    • A roller bearing fault diagnosis method based on EMD energy entropy and ANN
    • Yang Y, Cheng J,. A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J Sound Vib 2006; 294: 269-277.
    • (2006) J Sound Vib , vol.294 , pp. 269-277
    • Yang, Y.1    Cheng, J.2
  • 19
    • 82255174981 scopus 로고    scopus 로고
    • Early fault diagnosis of rotating machinery based on wavelet packets - Empirical mode decomposition feature extraction and neural network
    • Bin GF, Gao JJ, Li XJ, et al. Early fault diagnosis of rotating machinery based on wavelet packets-empirical mode decomposition feature extraction and neural network. Mech Syst Signal Process 2012; 27: 696-711.
    • (2012) Mech Syst Signal Process , vol.27 , pp. 696-711
    • Bin, G.F.1    Gao, J.J.2    Li, X.J.3
  • 20
    • 64049098473 scopus 로고    scopus 로고
    • Application of an intelligent classification method to mechanical fault diagnosis
    • Lei Y, He Z, Zi Y,. Application of an intelligent classification method to mechanical fault diagnosis. Expert Syst Appl 2009; 36: 9941-9948.
    • (2009) Expert Syst Appl , vol.36 , pp. 9941-9948
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 21
    • 33750481498 scopus 로고    scopus 로고
    • Combination of independent component and support vector machines for intelligent faults diagnosis of induction motors
    • Widodo A, Yang BS, Han T,. Combination of independent component and support vector machines for intelligent faults diagnosis of induction motors. Expert Syst Appl 2007; 32: 299-312.
    • (2007) Expert Syst Appl , vol.32 , pp. 299-312
    • Widodo, A.1    Yang, B.S.2    Han, T.3
  • 22
    • 34047251505 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs
    • Lei Y, He Z, Zi Y, et al. Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs. Mech Syst Signal Process 2007; 21: 2280-2294.
    • (2007) Mech Syst Signal Process , vol.21 , pp. 2280-2294
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 23
    • 77957121045 scopus 로고    scopus 로고
    • Induction motor fault diagnosis based on the k-NN and optimal feature selection
    • Nguyen NT, Lee HH,. Induction motor fault diagnosis based on the k-NN and optimal feature selection. Int J Electron 2010; 97: 1071-1081.
    • (2010) Int J Electron , vol.97 , pp. 1071-1081
    • Nguyen, N.T.1    Lee, H.H.2
  • 24
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large scale feature selection
    • Siedlecki W, Sklanky J,. A note on genetic algorithms for large scale feature selection. Pattern Recogn Lett 1989; 10: 335-347.
    • (1989) Pattern Recogn Lett , vol.10 , pp. 335-347
    • Siedlecki, W.1    Sklanky, J.2
  • 26
    • 84864690491 scopus 로고    scopus 로고
    • An integrated mechanism for feature selection and fuzzy rule extraction for classification
    • Chen YC, Pal NR, Chung IF,. An integrated mechanism for feature selection and fuzzy rule extraction for classification. IEEE Trans Fuzzy Syst 2012; 20: 683-698.
    • (2012) IEEE Trans Fuzzy Syst , vol.20 , pp. 683-698
    • Chen, Y.C.1    Pal, N.R.2    Chung, I.F.3
  • 27
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetics algorithm
    • Samanta B,. Gear fault detection using artificial neural networks and support vector machines with genetics algorithm. Mech Syst Signal Process 2004; 18: 625-644.
    • (2004) Mech Syst Signal Process , vol.18 , pp. 625-644
    • Samanta, B.1
  • 28
    • 0033689605 scopus 로고    scopus 로고
    • Genetic algorithms for feature selection in machine condition monitoring with vibration signals
    • Jack LB, Nandi AK,. Genetic algorithms for feature selection in machine condition monitoring with vibration signals. IEE Proc Vis Image Signal Process 2000; 147: 205-212.
    • (2000) IEE Proc Vis Image Signal Process , vol.147 , pp. 205-212
    • Jack, L.B.1    Nandi, A.K.2
  • 29
    • 33746363218 scopus 로고    scopus 로고
    • Selecting features for nuclear transients classification by means of genetic algorithm
    • Zio E, Baraldi P, Pedroni N,. Selecting features for nuclear transients classification by means of genetic algorithm. IEEE Trans Nucl Sci 2006; 53: 1479-1493.
    • (2006) IEEE Trans Nucl Sci , vol.53 , pp. 1479-1493
    • Zio, E.1    Baraldi, P.2    Pedroni, N.3
  • 30
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependence, max-relevance, and min-redundance
    • Peng H, Long F, Ding C,. Feature selection based on mutual information: criteria of max-dependence, max-relevance, and min-redundance. IEEE Trans Pattern Anal Mach Intell 2005; 27: 1226-1238.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 31
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Kohavi R,. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc Int Joint Conf Artif Intell 1995; 2: 1137-1145.
    • (1995) Proc Int Joint Conf Artif Intell , vol.2 , pp. 1137-1145
    • Kohavi, R.1
  • 32
    • 84954283453 scopus 로고    scopus 로고
    • Case Western Reserve University
    • Bearing data center, http://www.eecs.case.edu/laboratory/bearing, Case Western Reserve University.
    • Bearing data center1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.