메뉴 건너뛰기




Volumn 3, Issue 3, 2015, Pages 431-449

Active discovery of network roles for predicting the classes of network nodes

Author keywords

Active learning; Blockmodels; Collective classification; Community detection; Semisupervised learning; Support vector machines

Indexed keywords

SEMI-SUPERVISED LEARNING; SUPPORT VECTOR MACHINES; TECHNOLOGY TRANSFER;

EID: 84954231739     PISSN: 20511310     EISSN: 20511329     Source Type: Journal    
DOI: 10.1093/comnet/cnu043     Document Type: Article
Times cited : (10)

References (42)
  • 1
    • 34548684166 scopus 로고    scopus 로고
    • Clustering of sparse data via network communities-a prototype study of a large online market
    • Reichardt, J. & Bornholdt, S. (2007) Clustering of sparse data via network communities-a prototype study of a large online market. J. Stat. Mech.: Theor. Exp., 2007, P06016.
    • (2007) J. Stat. Mech.: Theor. Exp , vol.2007
    • Reichardt, J.1    Bornholdt, S.2
  • 2
    • 84958161527 scopus 로고    scopus 로고
    • The political blogosphere and the 2004
    • LinkKDD'05: Proceedings of the 3rd international workshop on Link Discovery. Chicago, Illinois
    • Adamic, L. & Glance, N. (2005) The political blogosphere and the 2004 U.S. Election: divided they blog. LinkKDD'05: Proceedings of the 3rd international workshop on Link Discovery. Chicago, Illinois, pp. 36-43.
    • (2005) U.S. Election: divided they blog , pp. 36-43
    • Adamic, L.1    Glance, N.2
  • 3
    • 33748701649 scopus 로고    scopus 로고
    • Detecting functional modules in the yeast protein-protein interaction network
    • Chen, J. & Yuan, B. (2006) Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics, 22, 2283-2290.
    • (2006) Bioinformatics , vol.22 , pp. 2283-2290
    • Chen, J.1    Yuan, B.2
  • 4
    • 7044264926 scopus 로고    scopus 로고
    • Chains of affection: the structure of adolescent romantic and sexual networks
    • Bearman, P. S., Moody, J. & Stovel, K. (2004) Chains of affection: the structure of adolescent romantic and sexual networks. Am. J. Sociol., 110, 44-91.
    • (2004) Am. J. Sociol , vol.110 , pp. 44-91
    • Bearman, P.S.1    Moody, J.2    Stovel, K.3
  • 5
    • 66749161576 scopus 로고    scopus 로고
    • Food web models: a plea for groups
    • Allesina, S. & Pascual, M. (2009) Food web models: a plea for groups. Ecol. Lett., 12, 652-662.
    • (2009) Ecol. Lett , vol.12 , pp. 652-662
    • Allesina, S.1    Pascual, M.2
  • 6
    • 0012864758 scopus 로고
    • Stochastic blockmodels: first steps
    • Holland, P. W., Laskey, K. B. & Leinhardt, S. (1983) Stochastic blockmodels: first steps. Soc. Netw., 5, 109-137.
    • (1983) Soc. Netw , vol.5 , pp. 109-137
    • Holland, P.W.1    Laskey, K.B.2    Leinhardt, S.3
  • 7
    • 0442296603 scopus 로고    scopus 로고
    • Estimation and prediction for stochastic blockstructures
    • Nowicki, K. & Snijders, T. A. B. (2001) Estimation and prediction for stochastic blockstructures. J. Am. Stat. Assoc., 96, 1077-1087.
    • (2001) J. Am. Stat. Assoc , vol.96 , pp. 1077-1087
    • Nowicki, K.1    Snijders, T.A.B.2
  • 17
    • 34249102504 scopus 로고    scopus 로고
    • Classification in networked data: a toolkit and a univariate case study
    • Macskassy, S. A. & Provost, F. (2007) Classification in networked data: a toolkit and a univariate case study. J. Mach. Learn. Res., 8, 935-983.
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 935-983
    • Macskassy, S.A.1    Provost, F.2
  • 21
    • 84864061876 scopus 로고    scopus 로고
    • A collapsed variational Bayesian inference algorithm for latent Dirichlet allocation
    • Teh, Y. W., Newman, D. & Welling, M. (2007) A collapsed variational Bayesian inference algorithm for latent Dirichlet allocation. Adv. Neural Inf. Process. Syst., 19.
    • (2007) Adv. Neural Inf. Process. Syst , vol.19
    • Teh, Y.W.1    Newman, D.2    Welling, M.3
  • 24
    • 84869186087 scopus 로고    scopus 로고
    • MedLDA: maximum margin supervised topic models
    • Zhu, J., Ahmed, A. & Xing, E. P. (2012) MedLDA: maximum margin supervised topic models. J. Mach. Learn. Res., 13, 2237-2278.
    • (2012) J. Mach. Learn. Res , vol.13 , pp. 2237-2278
    • Zhu, J.1    Ahmed, A.2    Xing, E.P.3
  • 26
    • 33750320924 scopus 로고    scopus 로고
    • Margin-based active learning for structured output spaces
    • Berlin, Germany, September 18-22, 2006 (J. Fürnkranz, T. Scheffer & M. Spiliopoulou eds). Springer
    • Roth, D. & Small, K. (2006) Margin-based active learning for structured output spaces. Machine Learning: ECML 2006, Proceedings of the 17th European Conference on Machine Learning, Berlin, Germany, September 18-22, 2006 (J. Fürnkranz, T. Scheffer &M. Spiliopoulou eds), vol. 4212. Springer, pp. 413-424.
    • (2006) Machine Learning: ECML 2006, Proceedings of the 17th European Conference on Machine Learning , vol.4212 , pp. 413-424
    • Roth, D.1    Small, K.2
  • 27
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong, S. & Koller, D. (2001) Support vector machine active learning with applications to text classification. J. Mach. Learn. Res., 2, 45-66.
    • (2001) J. Mach. Learn. Res , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 28
    • 84964085441 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Crammer, K. & Singer, Y. (2002) On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res., 2, 265-292.
    • (2002) J. Mach. Learn. Res , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 29
    • 77951138987 scopus 로고    scopus 로고
    • Performance of modularity maximization in practical contexts
    • Good, B. H., de Montjoye, Y.-A. & Clauset, A. (2010) Performance of modularity maximization in practical contexts. Phys. Rev. E, 81, 046106.
    • (2010) Phys. Rev. E , vol.81
    • Good, B.H.1    de Montjoye, Y.-A.2    Clauset, A.3
  • 30
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • Attias, H. (2000) A variational Bayesian framework for graphical models. Adv. Neural Inf. Process. Syst., 12, pp. 209-215.
    • (2000) Adv. Neural Inf. Process. Syst , vol.12 , pp. 209-215
    • Attias, H.1
  • 33
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • Tsochantaridis, I., Joachims, T., Hofmann, T. & Altun, Y. (2005) Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res., 6, 1453-1484.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 35
    • 42449110882 scopus 로고
    • An information flow model for conflict and fission in small groups
    • Zachary, W. W. (1977) An information flow model for conflict and fission in small groups. J. Anthropol. Res., 33, 452-473.
    • (1977) J. Anthropol. Res , vol.33 , pp. 452-473
    • Zachary, W.W.1
  • 36
    • 33749468596 scopus 로고    scopus 로고
    • Finding community structure in networks using the eigenvectors of matrices
    • Newman, M. E. J. (2006) Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E, 74, 036104.
    • (2006) Phys. Rev. E , vol.74
    • Newman, M.E.J.1
  • 39
    • 84954254311 scopus 로고    scopus 로고
    • NIPS Workshop on Analyzing Networks and Learning with Graphs. Vancouver, B.C., Canada
    • Bilgic, M. & Getoor, L. (2009) Link-based Active Learning. NIPS Workshop on Analyzing Networks and Learning with Graphs. Vancouver, B.C., Canada.
    • (2009) Link-based Active Learning
    • Bilgic, M.1    Getoor, L.2
  • 41
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • (B. Schölkopf, C. J. C. Burges & A. J. Smola eds), Cambridge, MA: MIT Press
    • Joachims, T. (1999) Making large-scale support vector machine learning practical. Advances in Kernel Methods (B. Schölkopf, C. J. C. Burges & A. J. Smola eds), Cambridge, MA: MIT Press, pp. 169-184.
    • (1999) Advances in Kernel Methods , pp. 169-184
    • Joachims, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.