메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 1506-1515

Collective classification of Congressional floor-debate transcripts

Author keywords

[No Author keywords available]

Indexed keywords

COLLECTIVE CLASSIFICATIONS; EXPERIMENTAL EVALUATION; MACHINE LEARNERS; MEAN-FIELD; SENTIMENT CLASSIFICATION;

EID: 84859049367     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (65)

References (25)
  • 1
    • 84859923482 scopus 로고    scopus 로고
    • When specialists and generalists work together: Overcoming domain dependence in sentiment tagging
    • Alina Andreevskaia and Sabine Bergler. 2008. When specialists and generalists work together: Overcoming domain dependence in sentiment tagging. In ACL, pages 290-298.
    • (2008) ACL , pp. 290-298
    • Andreevskaia, A.1    Bergler, S.2
  • 2
    • 72449190358 scopus 로고    scopus 로고
    • The power of negative thinking: Exploiting label disagreement in the min-cut classification framework
    • Mohit Bansal, Claire Cardie, and Lillian Lee. 2008. The power of negative thinking: Exploiting label disagreement in the min-cut classification framework. In COLING, pages 15-18.
    • (2008) COLING , pp. 15-18
    • Bansal, M.1    Cardie, C.2    Lee, L.3
  • 3
    • 65449149851 scopus 로고    scopus 로고
    • Effective label acquisition for collective classification
    • Mustafa Bilgic and Lise Getoor. 2008. Effective label acquisition for collective classification. In KDD, pages 43-51.
    • (2008) KDD , pp. 43-51
    • Bilgic, M.1    Getoor, L.2
  • 4
    • 49549123786 scopus 로고    scopus 로고
    • Combining collective classification and link prediction
    • IEEE Computer Society
    • Mustafa Bilgic, Galileo Namata, and Lise Getoor. 2007. Combining collective classification and link prediction. In ICDM Workshops, pages 381-386. IEEE Computer Society.
    • (2007) ICDM Workshops , pp. 381-386
    • Bilgic, M.1    Namata, G.2    Getoor, L.3
  • 5
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • Avrim Blum and Shuchi Chawla. 2001. Learning from labeled and unlabeled data using graph mincuts. In ICML, pages 19-26.
    • (2001) ICML , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 6
    • 1942452791 scopus 로고    scopus 로고
    • Choosing between two learning algorithms based on calibrated tests
    • Remco R. Bouckaert. 2003. Choosing between two learning algorithms based on calibrated tests. In ICML, pages 51-58.
    • (2003) ICML , pp. 51-58
    • Bouckaert, R.R.1
  • 7
    • 84859039148 scopus 로고    scopus 로고
    • Automatic satire detection: Are you having a laugh?
    • Clint Burfoot and Timothy Baldwin. 2009. Automatic satire detection: Are you having a laugh? In ACLIJCNLP Short Papers, pages 161-164.
    • (2009) ACLIJCNLP Short Papers , pp. 161-164
    • Burfoot, C.1    Baldwin, T.2
  • 8
    • 84987861037 scopus 로고    scopus 로고
    • Using multiple sources of agreement information for sentiment classification of political transcripts
    • ALTA
    • Clint Burfoot. 2008. Using multiple sources of agreement information for sentiment classification of political transcripts. In Australasian Language Technology Association Workshop 2008, pages 11-18. ALTA.
    • (2008) Australasian Language Technology Association Workshop 2008 , pp. 11-18
    • Burfoot, C.1
  • 10
    • 84859084743 scopus 로고    scopus 로고
    • An alignment algorithm using belief propagation and a structure-based distortion model
    • Fabien Cromires and Sadao Kurohashi. 2009. An alignment algorithm using belief propagation and a structure-based distortion model. In EACL, pages 166-174.
    • (2009) EACL , pp. 166-174
    • Cromires, F.1    Kurohashi, S.2
  • 11
    • 56449101965 scopus 로고    scopus 로고
    • Confidence-weighted linear classification
    • Mark Dredze, Koby Crammer, and Fernando Pereira. 2008. Confidence-weighted linear classification. In ICML, pages 264-271.
    • (2008) ICML , pp. 264-271
    • Dredze, M.1    Crammer, K.2    Pereira, F.3
  • 13
    • 0033225865 scopus 로고    scopus 로고
    • Introduction to variational methods for graphical models
    • DOI 10.1023/A:1007665907178
    • Michael Jordan, Zoubin Ghahramani, Tommi Jaakkola, Lawrence Saul, and David Heckerman. 1999. An introduction to variational methods for graphical models. Machine Learning, 37:183-233. (Pubitemid 30544678)
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 14
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, pages 282-289.
    • (2001) ICML , pp. 282-289
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.C.N.3
  • 15
    • 78349239201 scopus 로고    scopus 로고
    • Multi-domain sentiment classification
    • Shoushan Li and Chengqing Zong. 2008. Multi-domain sentiment classification. In ACL, pages 257-260.
    • (2008) ACL , pp. 257-260
    • Li, S.1    Zong, C.2
  • 16
    • 84859895244 scopus 로고    scopus 로고
    • Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales
    • Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In ACL, pages 115-124.
    • (2005) ACL , pp. 115-124
    • Pang, B.1    Lee, L.2
  • 17
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up?: Sentiment classification using machine learning techniques
    • Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up?: Sentiment classification using machine learning techniques. In EMNLP, pages 79-86.
    • (2002) EMNLP , pp. 79-86
    • Pang, B.1    Lee, L.2    Vaithyanathan, S.3
  • 18
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, editors. MIT Press
    • John C. Platt. 1999. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61-74. MIT Press.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 20
    • 80053375671 scopus 로고    scopus 로고
    • Dependency parsing by belief propagation
    • David A. Smith and Jason Eisner. 2008. Dependency parsing by belief propagation. In EMNLP, pages 145-156.
    • (2008) EMNLP , pp. 145-156
    • Smith, D.A.1    Eisner, J.2
  • 21
    • 84859901716 scopus 로고    scopus 로고
    • Recognizing stances in online debates
    • Swapna Somasundaran and Janyce Wiebe. 2009. Recognizing stances in online debates. In ACL-IJCNLP, pages 226-234.
    • (2009) ACL-IJCNLP , pp. 226-234
    • Somasundaran, S.1    Wiebe, J.2
  • 22
    • 80053429155 scopus 로고    scopus 로고
    • Supervised and unsupervised methods in employing discourse relations for improving opinion polarity classification
    • Swapna Somasundaran, Galileo Namata, Janyce Wiebe, and Lise Getoor. 2009. Supervised and unsupervised methods in employing discourse relations for improving opinion polarity classification. In EMNLP, pages 170-179.
    • (2009) EMNLP , pp. 170-179
    • Somasundaran, S.1    Namata, G.2    Wiebe, J.3    Getoor, L.4
  • 23
    • 1942418618 scopus 로고    scopus 로고
    • Discriminative probabilistic models for relational data
    • Ben Taskar, Pieter Abbeel, and Daphne Koller. 2002. Discriminative probabilistic models for relational data. In UAI.
    • (2002) UAI
    • Taskar, B.1    Abbeel, P.2    Koller, D.3
  • 24
    • 80053357527 scopus 로고    scopus 로고
    • Get out the vote: Determining support or opposition from congressional floor-debate transcripts
    • Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get out the vote: Determining support or opposition from congressional floor-debate transcripts. In EMNLP, pages 327-335.
    • (2006) EMNLP , pp. 327-335
    • Thomas, M.1    Pang, B.2    Lee, L.3
  • 25
    • 85024373635 scopus 로고    scopus 로고
    • A re-examination of text categorization methods. in Proceedings
    • Yiming Yang and Xin Liu. 1999. A re-examination of text categorization methods. In Proceedings ACM SIGIR, pages 42-49.
    • (1999) ACM SIGIR , pp. 42-49
    • Yang, Y.1    Liu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.