-
1
-
-
3042597440
-
Learning multi-label scene classification
-
M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757-1771, 2004.
-
(2004)
Pattern Recognition
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.R.1
Luo, J.2
Shen, X.3
Brown, C.M.4
-
3
-
-
52649118114
-
Semi-supervised multi-label learning by solving a sylvester equation
-
Atlanta, GA
-
G. Chen, Y. Song, F. Wang, and C. Zhang. Semi-supervised multi-label learning by solving a sylvester equation. In Proceedings of the 8th SIAM International Conference on Data Mining, pages 410-419, Atlanta, GA, 2008.
-
(2008)
Proceedings of the 8th SIAM International Conference on Data Mining
, pp. 410-419
-
-
Chen, G.1
Song, Y.2
Wang, F.3
Zhang, C.4
-
4
-
-
68949141664
-
Combining instance-based learning and logistic regression for multilabel classification
-
W. Cheng and E. Hüllermeier. Combining instance-based learning and logistic regression for multilabel classification. Machine Learning, 76(2-3):211-225, 2009.
-
(2009)
Machine Learning
, vol.76
, Issue.2-3
, pp. 211-225
-
-
Cheng, W.1
Hüllermeier, E.2
-
5
-
-
77956522919
-
Bayes optimal multilabel classification via probabilistic classifier chains
-
Haifa, Israel
-
K. Dembczyński, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classification via probabilistic classifier chains. In Proceedings of the 28th International Conference on Machine Learning, pages 279-286, Haifa, Israel, 2010.
-
(2010)
Proceedings of the 28th International Conference on Machine Learning
, pp. 279-286
-
-
Dembczyński, K.1
Cheng, W.2
Hüllermeier, E.3
-
8
-
-
77956197036
-
Community outliers and their efficient detection in information networks
-
Washington, DC
-
J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun, and J. Han. Community outliers and their efficient detection in information networks. In Proceedings of the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 913-822, Washington, DC, 2010.
-
(2010)
Proceedings of the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
, pp. 913-822
-
-
Gao, J.1
Liang, F.2
Fan, W.3
Wang, C.4
Sun, Y.5
Han, J.6
-
11
-
-
33845583962
-
Correlated label propagation with application to multi-label learning
-
New York, NY
-
F. Kang, R. Jin, and R. Sukthankar. Correlated label propagation with application to multi-label learning. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 1719-1726, New York, NY, 2006.
-
(2006)
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1719-1726
-
-
Kang, F.1
Jin, R.2
Sukthankar, R.3
-
14
-
-
33750718803
-
Semi-supervised multilabel learning by constrained non-negative matrix factorization
-
Boston, MA
-
Y. Liu, R. Jin, and L. Yang. Semi-supervised multilabel learning by constrained non-negative matrix factorization. In Proceedings of the 21st National Conference on Artificial Intelligence, pages 421-426, Boston, MA, 2006.
-
(2006)
Proceedings of the 21st National Conference on Artificial Intelligence
, pp. 421-426
-
-
Liu, Y.1
Jin, R.2
Yang, L.3
-
16
-
-
0003223784
-
Multi-label text classification with a mixture model trained by EM
-
Orlando, FL
-
A. McCallum. Multi-label text classification with a mixture model trained by EM. In AAAI'99 Workshop on Text Learning, Orlando, FL, 1999.
-
(1999)
AAAI'99 Workshop on Text Learning
-
-
McCallum, A.1
-
17
-
-
36349037124
-
Cautious inference in collective classification
-
Vancouver, Canada
-
L. K. McDowell, K. M. Gupta, and D. W. Aha. Cautious inference in collective classification. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pages 596-601, Vancouver, Canada, 2007.
-
(2007)
Proceedings of the 22nd AAAI Conference on Artificial Intelligence
, pp. 596-601
-
-
McDowell, L.K.1
Gupta, K.M.2
Aha, D.W.3
-
20
-
-
12244307639
-
Collective classification with relational dependency networks
-
Washington, DC
-
J. Neville and D. Jensen. Collective classification with relational dependency networks. In KDD'03 Workshop on Multi-Relational Data Mining, pages 77-91, Washington, DC, 2003.
-
(2003)
KDD'03 Workshop on Multi-Relational Data Mining
, pp. 77-91
-
-
Neville, J.1
Jensen, D.2
-
21
-
-
67049088703
-
Multi-label classification using ensembles of pruned sets
-
Pisa, Italy
-
J. Read, B. Pfahringer, and G. Holmes. Multi-label classification using ensembles of pruned sets. In Proceedings of the 8th IEEE International Conference on Data Mining, pages 995-1000, Pisa, Italy, 2008.
-
(2008)
Proceedings of the 8th IEEE International Conference on Data Mining
, pp. 995-1000
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
-
22
-
-
70349968175
-
Classifier chains for multi-label classification
-
Bled, Slovenia
-
J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification. In Proceedings of the 20th European Conference on Machine Learning, pages 254-269, Bled, Slovenia, 2009.
-
(2009)
Proceedings of the 20th European Conference on Machine Learning
, pp. 254-269
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
23
-
-
0033905095
-
Boostexter: A boosting-based system for text categorization
-
R. E. Schapire and Y. Singer. Boostexter: a boosting-based system for text categorization. Machine Learning, 39(2-3):135-168, 2000.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
24
-
-
53749083869
-
Collective classification in network data
-
P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad. Collective classification in network data. AI Magazine, 29(3):93-106, 2008.
-
(2008)
AI Magazine
, vol.29
, Issue.3
, pp. 93-106
-
-
Sen, P.1
Namata, G.2
Bilgic, M.3
Getoor, L.4
Gallagher, B.5
Eliassi-Rad, T.6
-
25
-
-
1942418618
-
Discriminative probabilistic models for relational data
-
Edmonton, Alberta
-
B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for relational data. In UAI, pages 482-492, Edmonton, Alberta, 2002.
-
(2002)
UAI
, pp. 482-492
-
-
Taskar, B.1
Abbeel, P.2
Koller, D.3
-
29
-
-
33947681316
-
Ml-knn: A lazy learning approach to multi-label learning
-
M.-L. Zhang and Z.-H. Zhou. Ml-knn: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7):2038-2048, 2007.
-
(2007)
Pattern Recognition
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
-
30
-
-
80054948516
-
Multi-label classification without the multi-label cost
-
Columbus, OH
-
X. Zhang, Q. Yuan, S. Zhao, W. Fan, W. Zheng, and Z. Wang. Multi-label classification without the multi-label cost. In Proceedings of the 10th SIAM International Conference on Data Mining, pages 778-789, Columbus, OH, 2010.
-
(2010)
Proceedings of the 10th SIAM International Conference on Data Mining
, pp. 778-789
-
-
Zhang, X.1
Yuan, Q.2
Zhao, S.3
Fan, W.4
Zheng, W.5
Wang, Z.6
|