메뉴 건너뛰기




Volumn 22, Issue , 2012, Pages 409-421

Hierarchical latent dictionaries for models of brain activation

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BRAIN MAPPING; KNOWLEDGE MANAGEMENT; MAGNETOENCEPHALOGRAPHY;

EID: 84954223375     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (9)

References (30)
  • 1
    • 21644455755 scopus 로고    scopus 로고
    • Hierarchical models for assessing variability among functions
    • June
    • S. Behseta, Robert E. Kass, and Garrick L. Wall-Strom. Hierarchical models for assessing variability among functions. Biometrika, 92(2):419-434, June 2005. ISSN 0006-3444.
    • (2005) Biometrika , vol.92 , Issue.2 , pp. 419-434
    • Behseta, S.1    Kass, R.E.2    Wall-Strom, G.L.3
  • 2
    • 79957827711 scopus 로고    scopus 로고
    • Sparse Bayesian infinite factor models
    • A. Bhattacharya and D.B. Dunson. Sparse Bayesian infinite factor models. Biometrika, 98(2):291-306, 2011.
    • (2011) Biometrika , vol.98 , Issue.2 , pp. 291-306
    • Bhattacharya, A.1    Dunson, D.B.2
  • 3
    • 0032273615 scopus 로고    scopus 로고
    • General methods for general methods for monitoring convergence of iterative simulations
    • S.P. Brooks and A. Gelman. General methods for general methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7:434-455, 1998.
    • (1998) Journal of Computational and Graphical Statistics , vol.7 , pp. 434-455
    • Brooks, S.P.1    Gelman, A.2
  • 6
    • 2442671691 scopus 로고    scopus 로고
    • Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms
    • June
    • Guido Dornhege, Benjamin Blankertz, Gabriel Curio, and Klaus-Robert Miiller. Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE transactions on bio-medical engineering, 51(6):993-1002, June 2004. ISSN 0018-9294.
    • (2004) IEEE Transactions on Bio-medical Engineering , vol.51 , Issue.6 , pp. 993-1002
    • Dornhege, G.1    Blankertz, B.2    Curio, G.3    Miiller, K.4
  • 9
    • 13444251351 scopus 로고    scopus 로고
    • Nonstationary mul-tivariate process modeling through spatially varying coregionalization
    • December
    • Alan E. Gelfand, Alexandra M. Schmidt, Sudipto Banerjee, and C. F. Sirmans. Nonstationary mul-tivariate process modeling through spatially varying coregionalization. Test, 13(2):263-312, December 2004. ISSN 1133-0686. doi: 10.1007/BF02595775.
    • (2004) Test , vol.13 , Issue.2 , pp. 263-312
    • Gelfand, A.E.1    Schmidt, A.M.2    Banerjee, S.3    Sirmans, C.F.4
  • 10
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Andrew Gelman and Donald B Rubin. Inference from iterative simulation using multiple sequences. Statistical Science, 7(4):457-472, 1992.
    • (1992) Statistical Science , vol.7 , Issue.4 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 11
    • 72649086818 scopus 로고    scopus 로고
    • Default prior distributions and efficient posterior computation in Bayesian factor analysis
    • Joyee Ghosh and David B Dunson. Default Prior Distributions and Efficient Posterior Computation in Bayesian Factor Analysis. Journal of Computational and Graphical Statistics, 18(2):306-320, 2009.
    • (2009) Journal of Computational and Graphical Statistics , vol.18 , Issue.2 , pp. 306-320
    • Ghosh, J.1    Dunson, D.B.2
  • 12
    • 61449261776 scopus 로고    scopus 로고
    • Combined spatial and non-spatial prior for inference on MRI time-series
    • Adrian R Groves, Michael A Chappell, and Mark W Woolrich. Combined spatial and non-spatial prior for inference on MRI time-series. NeuroImage, 45(3):795-809, 2009.
    • (2009) NeuroImage , vol.45 , Issue.3 , pp. 795-809
    • Groves, A.R.1    Chappell, M.A.2    Woolrich, M.W.3
  • 14
    • 26244462082 scopus 로고
    • Magnetoencephalographythe-ory, instrumentation, and applications to noninvasive studies of the working human brain
    • M. Hamalainen, R. Hari, R.J. Ilmoniemi, J. Knuutila, and O.V. Lounasmaa. Magnetoencephalographythe-ory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews ofmod-ern Physics, 65(2), 1993.
    • (1993) Reviews Ofmod-ern Physics , vol.65 , pp. 2
    • Hamalainen, M.1    Hari, R.2    Ilmoniemi, R.J.3    Knuutila, J.4    Lounasmaa, O.V.5
  • 16
    • 36148984293 scopus 로고    scopus 로고
    • Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG
    • January
    • Stefan J Kiebel, Jean Daunizeau, Christophe Phillips, and Karl J Friston. Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG. NeuroImage, 39(2):728-41, January 2008. ISSN 10538119.
    • (2008) NeuroImage , vol.39 , Issue.2 , pp. 728-741
    • Kiebel, S.J.1    Daunizeau, J.2    Phillips, C.3    Friston, K.J.4
  • 18
    • 26844572294 scopus 로고    scopus 로고
    • Spatio-spectral filters for improving the classification of single trial EEG
    • September
    • Steven Lemm, Benjamin Blankertz, Gabriel Curio, and Klaus-Robert Muller. Spatio-spectral filters for improving the classification of single trial EEG. IEEE transactions on bio-medical engineering, 52(9):1541-8, September 2005. ISSN 0018-9294.
    • (2005) IEEE Transactions on Bio-medical Engineering , vol.52 , Issue.9 , pp. 1541-1548
    • Lemm, S.1    Blankertz, B.2    Curio, G.3    Muller, K.4
  • 19
    • 70349947771 scopus 로고    scopus 로고
    • Spatial dynamic factor analysis
    • Hedibert Freitas Lopes, Esther Salazar, and Dani Gamerman. Spatial dynamic factor analysis. Bayesian Analysis, 3(4):759-792, 2008. ISSN 19316690.
    • (2008) Bayesian Analysis , vol.3 , Issue.4 , pp. 759-792
    • Freitas Lopes, H.1    Salazar, E.2    Gamerman, D.3
  • 22
    • 33645321441 scopus 로고    scopus 로고
    • Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements
    • S Taulu and J Simola. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Physics in Medicine and Biology, 51:1-10, 2006.
    • (2006) Physics in Medicine and Biology , vol.51 , pp. 1-10
    • Taulu, S.1    Simola, J.2
  • 23
    • 66149181799 scopus 로고    scopus 로고
    • Removal of magnetoen-cephalographic artifacts with temporal signal-space separation: Demonstration with single-trial auditory-evoked responses
    • May
    • Samu Taulu and Riitta Hari. Removal of magnetoen-cephalographic artifacts with temporal signal-space separation: demonstration with single-trial auditory-evoked responses. Human brain mapping, 30(5):1524-34, May 2009. ISSN 1097-0193.
    • (2009) Human Brain Mapping , vol.30 , Issue.5 , pp. 1524-1534
    • Taulu, S.1    Hari, R.2
  • 25
    • 84862602372 scopus 로고    scopus 로고
    • Semi-parametric latent factor models
    • R. G. Cowell and Z. Ghahramani, editors. Citeseer
    • Y.W. Teh, Matthias Seeger, and M.I. Jordan. Semi-parametric latent factor models. In R. G. Cowell and Z. Ghahramani, editors, Workshop on Artificial Intelligence and Statistics, volume 10, pages 333-340. Citeseer, 2005.
    • (2005) Workshop on Artificial Intelligence and Statistics , vol.10 , pp. 333-340
    • Teh, Y.W.1    Seeger, M.2    Jordan, M.I.3
  • 26
    • 1842557587 scopus 로고    scopus 로고
    • Eduardo aubert-vazquez and pedro a valdes-sosa. Bayesian model averaging in EEG/MEG imaging
    • April
    • Nelson J Trujillo-Barreto, Eduardo Aubert-Vazquez, and Pedro a Valdes-Sosa. Bayesian model averaging in EEG/MEG imaging. NeuroImage, 21(4):1300-19, April 2004. ISSN 1053-8119.
    • (2004) NeuroImage , vol.21 , Issue.4 , pp. 1300-1319
    • Trujillo-Barreto, N.J.1
  • 27
    • 0031105991 scopus 로고    scopus 로고
    • Signal-space projection method for separating MEG or EEG into components
    • March
    • M A Uusitalo and R J Ilmoniemi. Signal-space projection method for separating MEG or EEG into components. Medical & biological engineering & computing, 35(2):135-40, March 1997. ISSN 0140-0118.
    • (1997) Medical & Biological Engineering & Computing , vol.35 , Issue.2 , pp. 135-140
    • Uusitalo, M.A.1    Ilmoniemi, R.J.2
  • 28
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the large p, small n paradigm
    • 2003
    • Mike West. Bayesian Factor Regression Models in the Large p, Small n Paradigm. Bayesian Statistics, 7 (2003):723-732, 2003.
    • (2003) Bayesian Statistics , vol.7 , pp. 723-732
    • West, M.1
  • 30
    • 70349962981 scopus 로고    scopus 로고
    • Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG
    • January
    • David P Wipf, Julia P Owen, Hagai T Attias, Ken-Suke Sekihara, and Srikantan S Nagarajan. Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG. NeuroImage, 49(1):641-55, January 2010. ISSN 1095-9572.
    • (2010) NeuroImage , vol.49 , Issue.1 , pp. 641-655
    • Wipf, D.P.1    Owen, J.P.2    Attias, H.T.3    Sekihara, K.4    Nagarajan, S.S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.