메뉴 건너뛰기




Volumn , Issue , 2014, Pages 931-940

Top-k frequent itemsets via differentially private FP-trees

Author keywords

differential privacy; fp tree; frequent itemset

Indexed keywords

DATA MINING; FORESTRY; PRIVATIZATION;

EID: 84907022968     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2623330.2623723     Document Type: Conference Paper
Times cited : (75)

References (19)
  • 1
    • 33749553930 scopus 로고    scopus 로고
    • On privacy preservation against adversarial data mining
    • New York, NY, USA, ACM
    • C. C. Aggarwal, J. Pei, and B. Zhang. On privacy preservation against adversarial data mining. In KDD 2006, pages 510-516, New York, NY, USA, 2006. ACM.
    • (2006) KDD 2006 , pp. 510-516
    • Aggarwal, C.C.1    Pei, J.2    Zhang, B.3
  • 2
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • San Francisco, CA, USA, Morgan Kaufmann Publishers Inc.
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB '94, pages 487-499, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.
    • (1994) VLDB '94 , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 4
    • 77956209107 scopus 로고    scopus 로고
    • Discovering frequent patterns in sensitive data
    • New York, NY, USA, ACM
    • R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta. Discovering frequent patterns in sensitive data. In KDD 2010, pages 503-512, New York, NY, USA, 2010. ACM.
    • (2010) KDD 2010 , pp. 503-512
    • Bhaskar, R.1    Laxman, S.2    Smith, A.3    Thakurta, A.4
  • 5
    • 78049324078 scopus 로고    scopus 로고
    • Bisc: A bitmap itemset support counting approach for efficient frequent itemset mining
    • Oct.
    • J. Chen and K. Xiao. Bisc: A bitmap itemset support counting approach for efficient frequent itemset mining. ACM Trans. Knowl. Discov. Data, 4(3):12:1-12:37, Oct. 2010.
    • (2010) ACM Trans. Knowl. Discov. Data , vol.4 , Issue.3
    • Chen, J.1    Xiao, K.2
  • 6
    • 79959954388 scopus 로고    scopus 로고
    • Differentially private data cubes: Optimizing noise sources and consistency
    • New York, NY, USA, ACM
    • B. Ding, M. Winslett, J. Han, and Z. Li. Differentially private data cubes: optimizing noise sources and consistency. In SIGMOD 2011, pages 217-228, New York, NY, USA, 2011. ACM.
    • (2011) SIGMOD 2011 , pp. 217-228
    • Ding, B.1    Winslett, M.2    Han, J.3    Li, Z.4
  • 7
    • 33746335051 scopus 로고    scopus 로고
    • Differential privacy
    • July 9-16
    • C. Dwork. Differential privacy. In ICALP 2006, pages 1-12, July 9-16 2006.
    • (2006) ICALP 2006 , pp. 1-12
    • Dwork, C.1
  • 8
    • 33745556605 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • Springer
    • C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC 2006, pages 265-284. Springer, 2006.
    • (2006) TCC 2006 , pp. 265-284
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 9
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • May
    • J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD Rec., 29(2):1-12, May 2000.
    • (2000) SIGMOD Rec. , vol.29 , Issue.2 , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 11
    • 78751489078 scopus 로고    scopus 로고
    • A multiplicative weights mechanism for privacy-preserving data analysis
    • Washington, DC, USA, IEEE Computer Society
    • M. Hardt and G. N. Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis. In FOCS 2010, pages 61-70, Washington, DC, USA, 2010. IEEE Computer Society.
    • (2010) FOCS 2010 , pp. 61-70
    • Hardt, M.1    Rothblum, N.G.2
  • 12
    • 78650518102 scopus 로고    scopus 로고
    • Boosting the accuracy of differentially private histograms through consistency
    • Sept.
    • M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private histograms through consistency. Proc. VLDB Endow., 3(1-2):1021-1032, Sept. 2010.
    • (2010) Proc. VLDB Endow. , vol.3 , Issue.1-2 , pp. 1021-1032
    • Hay, M.1    Rastogi, V.2    Miklau, G.3    Suciu, D.4
  • 13
    • 12244296735 scopus 로고    scopus 로고
    • When do data mining results violate privacy?
    • New York, NY, USA, ACM
    • M. Kantarcioǧlu, J. Jin, and C. Clifton. When do data mining results violate privacy? In KDD 2004, pages 599-604, New York, NY, USA, 2004. ACM.
    • (2004) KDD 2004 , pp. 599-604
    • Kantarcioǧlu, M.1    Jin, J.2    Clifton, C.3
  • 15
    • 84872862536 scopus 로고    scopus 로고
    • Privbasis: Frequent itemset mining with differential privacy
    • July
    • N. Li, W. Qardaji, D. Su, and J. Cao. Privbasis: frequent itemset mining with differential privacy. Proc. VLDB Endow., 5(11):1340-1351, July 2012.
    • (2012) Proc. VLDB Endow. , vol.5 , Issue.11 , pp. 1340-1351
    • Li, N.1    Qardaji, W.2    Su, D.3    Cao, J.4
  • 16
    • 70849116921 scopus 로고    scopus 로고
    • Privacy integrated queries: An extensible platform for privacy-preserving data analysis
    • New York, NY, USA, ACM
    • F. D. McSherry. Privacy integrated queries: An extensible platform for privacy-preserving data analysis. In SIGMOD 2009, pages 19-30, New York, NY, USA, 2009. ACM.
    • (2009) SIGMOD 2009 , pp. 19-30
    • McSherry, F.D.1
  • 17
    • 77954745685 scopus 로고    scopus 로고
    • Interactive privacy via the median mechanism
    • New York, NY, USA, ACM
    • A. Roth and T. Roughgarden. Interactive privacy via the median mechanism. In STOC 2010, pages 765-774, New York, NY, USA, 2010. ACM.
    • (2010) STOC 2010 , pp. 765-774
    • Roth, A.1    Roughgarden, T.2
  • 18
    • 0033718951 scopus 로고    scopus 로고
    • Scalable algorithms for association mining
    • May
    • M. J. Zaki. Scalable algorithms for association mining. IEEE Trans. on Knowl. and Data Eng., 12(3):372-390, May 2000.
    • (2000) IEEE Trans. on Knowl. and Data Eng. , vol.12 , Issue.3 , pp. 372-390
    • Zaki, M.J.1
  • 19
    • 84875100172 scopus 로고    scopus 로고
    • On differentially private frequent itemset mining
    • Nov.
    • C. Zeng, J. F. Naughton, and J.-Y. Cai. On differentially private frequent itemset mining. Proc. VLDB Endow., 6(1):25-36, Nov. 2012.
    • (2012) Proc. VLDB Endow. , vol.6 , Issue.1 , pp. 25-36
    • Zeng, C.1    Naughton, J.F.2    Cai, J.-Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.