-
1
-
-
84858012279
-
Scalable inference in latent variable models
-
A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J. Smola. Scalable inference in latent variable models. In WSDM, 2012.
-
(2012)
WSDM
-
-
Ahmed, A.1
Aly, M.2
Gonzalez, J.3
Narayanamurthy, S.4
Smola, A.J.5
-
4
-
-
80053451705
-
Parallel coordinate descent for l1-regularized loss minimization
-
J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent for l1-regularized loss minimization. In ICML, 2011.
-
(2011)
ICML
-
-
Bradley, J.K.1
Kyrola, A.2
Bickson, D.3
Guestrin, C.4
-
5
-
-
84954161953
-
High-performance distributed ML at scale through parameter server consistency models
-
W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and E. P. Xing. High-performance distributed ML at scale through parameter server consistency models. In AAAI, 2014.
-
(2014)
AAAI
-
-
Dai, W.1
Kumar, A.2
Wei, J.3
Ho, Q.4
Gibson, G.5
Xing, E.P.6
-
6
-
-
84877760312
-
Large scale distributed deep networks
-
J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A. Tucker, et al. Large scale distributed deep networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.V.6
Mao, M.Z.7
Ranzato, M.8
Senior, A.W.9
Tucker, P.A.10
-
7
-
-
37549003336
-
MapReduce: Simplified data processing on large clusters
-
J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. Communications of the ACM, 51(1): 107-113, 2008.
-
(2008)
Communications of the ACM
, vol.51
, Issue.1
, pp. 107-113
-
-
Dean, J.1
Ghemawat, S.2
-
8
-
-
70449440300
-
Ultrahigh dimensional feature selection: Beyond the linear model
-
J. Fan, R. Samworth, and Y. Wu. Ultrahigh dimensional feature selection: beyond the linear model. The Journal of Machine Learning Research, 10: 2013-2038, 2009.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 2013-2038
-
-
Fan, J.1
Samworth, R.2
Wu, Y.3
-
9
-
-
45849107328
-
Pathwise coordinate optimization
-
J. Friedman, T. Hastie, H. Hofling, and R. Tibshirani. Pathwise coordinate optimization. Annals of Applied Statistics, 1(2): 302-332, 2007.
-
(2007)
Annals of Applied Statistics
, vol.1
, Issue.2
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Hofling, H.3
Tibshirani, R.4
-
10
-
-
80052668032
-
Large-scale matrix factorization with distributed stochastic gradient descent
-
R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization with distributed stochastic gradient descent. In SIGKDD, 2011.
-
(2011)
SIGKDD
-
-
Gemulla, R.1
Nijkamp, E.2
Haas, P.J.3
Sismanis, Y.4
-
11
-
-
84891720231
-
PRObE: A thousand-node experimental cluster for computer systems research
-
login
-
G. Gibson, G. Grider, A. Jacobson, and W. Lloyd. PRObE: A thousand-node experimental cluster for computer systems research. USENIX; login, 38, 2013.
-
(2013)
USENIX
, vol.38
-
-
Gibson, G.1
Grider, G.2
Jacobson, A.3
Lloyd, W.4
-
12
-
-
84858064738
-
Parallel gibbs sampling: From colored fields to thin junction trees
-
J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin. Parallel gibbs sampling: From colored fields to thin junction trees. In AISTATS, 2011.
-
(2011)
AISTATS
-
-
Gonzalez, J.1
Low, Y.2
Gretton, A.3
Guestrin, C.4
-
13
-
-
85072980230
-
PowerGraph: Distributed graph-parallel computation on natural graphs
-
J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: Distributed graph-parallel computation on natural graphs. In OSDI, 2012.
-
(2012)
OSDI
-
-
Gonzalez, J.1
Low, Y.2
Gu, H.3
Bickson, D.4
Guestrin, C.5
-
15
-
-
84898988368
-
More effective distributed ML via a stale synchronous parallel parameter server
-
Q. Ho, J. Cipar, H. Cui, J. Kim, S. Lee, P. B. Gibbons, G. Gibson, G. R. Ganger, and E. P. Xing. More effective distributed ML via a stale synchronous parallel parameter server. In NIPS, 2013.
-
(2013)
NIPS
-
-
Ho, Q.1
Cipar, J.2
Cui, H.3
Kim, J.4
Lee, S.5
Gibbons, P.B.6
Gibson, G.7
Ganger, G.R.8
Xing, E.P.9
-
16
-
-
84880243080
-
On collocations and topic models
-
Jey Han Lau, Timothy Baldwin, and David Newman. On collocations and topic models. ACM Transactions on Speech and Language Processing (TSLP), 10(3): 10, 2013.
-
(2013)
ACM Transactions on Speech and Language Processing (TSLP)
, vol.10
, Issue.3
, pp. 10
-
-
Lau, J.H.1
Baldwin, T.2
Newman, D.3
-
17
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Q. V. Le, M. A. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean, and A. Y. Ng. Building high-level features using large scale unsupervised learning. In ICML, 2012.
-
(2012)
ICML
-
-
Le, Q.V.1
Ranzato, M.A.2
Monga, R.3
Devin, M.4
Chen, K.5
Corrado, G.S.6
Dean, J.7
Ng, A.Y.8
-
18
-
-
84937912100
-
Scaling distributed machine learning with the parameter server
-
M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B. Su. Scaling distributed machine learning with the parameter server. In OSDI, 2014.
-
(2014)
OSDI
-
-
Li, M.1
Andersen, D.G.2
Park, J.W.3
Smola, A.J.4
Ahmed, A.5
Josifovski, V.6
Long, J.7
Shekita, E.J.8
Su, B.9
-
19
-
-
84863735533
-
Distributed GraphLab: A framework for machine learning and data mining in the cloud
-
Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Distributed GraphLab: A framework for machine learning and data mining in the cloud. In VLDB, 2012.
-
(2012)
VLDB
-
-
Low, Y.1
Gonzalez, J.2
Kyrola, A.3
Bickson, D.4
Guestrin, C.5
Hellerstein, J.M.6
-
20
-
-
70349433731
-
Distributed algorithms for topic models
-
D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed algorithms for topic models. The Journal of Machine Learning Research, 10: 1801-1828, 2009.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 1801-1828
-
-
Newman, D.1
Asuncion, A.2
Smyth, P.3
Welling, M.4
-
22
-
-
84912132796
-
-
arXiv: 1405.4402 [cs.IR]
-
Y. Wang, X. Zhao, Z. Sun, H. Yan, L. Wang, Z. Jin, L. Wang, Y. Gao, J. Zeng, Q. Yang, et al. Towards topic modeling for big data. arXiv: 1405.4402 [cs.IR], 2014.
-
(2014)
Towards Topic Modeling for Big Data
-
-
Wang, Y.1
Zhao, X.2
Sun, Z.3
Yan, H.4
Wang, L.5
Jin, Z.6
Wang, L.7
Gao, Y.8
Zeng, J.9
Yang, Q.10
-
23
-
-
84937920438
-
-
arXiv: 1312.7869 [stat.ML]
-
J. Wei, W. Dai, A. Kumar, X. Zheng, Q. Ho, and E. P. Xing. Consistent bounded-asynchronous parameter servers for distributed ML. arXiv: 1312.7869 [stat.ML], 2013.
-
(2013)
Consistent Bounded-asynchronous Parameter Servers for Distributed ML
-
-
Wei, J.1
Dai, W.2
Kumar, A.3
Zheng, X.4
Ho, Q.5
Xing, E.P.6
-
24
-
-
84874049380
-
Scalable coordinate descent approaches to parallel matrix factorization for recommender systems
-
H. Yu, C. Hsieh, S. Si, and I. Dhillon. Scalable coordinate descent approaches to parallel matrix factorization for recommender systems. In ICDM, 2012.
-
(2012)
ICDM
-
-
Yu, H.1
Hsieh, C.2
Si, S.3
Dhillon, I.4
-
25
-
-
85085251984
-
Spark: Cluster computing with working sets
-
M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster computing with working sets. In HotCloud, 2010.
-
(2010)
HotCloud
-
-
Zaharia, M.1
Chowdhury, M.2
Franklin, M.J.3
Shenker, S.4
Stoica, I.5
-
26
-
-
70350675904
-
Large-scale parallel collaborative filtering for the netflix prize
-
Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative filtering for the netflix prize. In AAIM, 2008.
-
(2008)
AAIM
-
-
Zhou, Y.1
Wilkinson, D.2
Schreiber, R.3
Pan, R.4
|