메뉴 건너뛰기




Volumn 4, Issue January, 2014, Pages 2834-2842

On model parallelization and scheduling strategies for distributed machine learning

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; COMPUTER PROGRAMMING; FACTORIZATION; INFORMATION SCIENCE; ITERATIVE METHODS; LEARNING SYSTEMS; SCHEDULING;

EID: 84937822418     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (105)

References (28)
  • 4
    • 80053451705 scopus 로고    scopus 로고
    • Parallel coordinate descent for l1-regularized loss minimization
    • J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent for l1-regularized loss minimization. In ICML, 2011.
    • (2011) ICML
    • Bradley, J.K.1    Kyrola, A.2    Bickson, D.3    Guestrin, C.4
  • 5
    • 84954161953 scopus 로고    scopus 로고
    • High-performance distributed ML at scale through parameter server consistency models
    • W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and E. P. Xing. High-performance distributed ML at scale through parameter server consistency models. In AAAI, 2014.
    • (2014) AAAI
    • Dai, W.1    Kumar, A.2    Wei, J.3    Ho, Q.4    Gibson, G.5    Xing, E.P.6
  • 7
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. Communications of the ACM, 51(1): 107-113, 2008.
    • (2008) Communications of the ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 8
    • 70449440300 scopus 로고    scopus 로고
    • Ultrahigh dimensional feature selection: Beyond the linear model
    • J. Fan, R. Samworth, and Y. Wu. Ultrahigh dimensional feature selection: beyond the linear model. The Journal of Machine Learning Research, 10: 2013-2038, 2009.
    • (2009) The Journal of Machine Learning Research , vol.10 , pp. 2013-2038
    • Fan, J.1    Samworth, R.2    Wu, Y.3
  • 10
    • 80052668032 scopus 로고    scopus 로고
    • Large-scale matrix factorization with distributed stochastic gradient descent
    • R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization with distributed stochastic gradient descent. In SIGKDD, 2011.
    • (2011) SIGKDD
    • Gemulla, R.1    Nijkamp, E.2    Haas, P.J.3    Sismanis, Y.4
  • 11
    • 84891720231 scopus 로고    scopus 로고
    • PRObE: A thousand-node experimental cluster for computer systems research
    • login
    • G. Gibson, G. Grider, A. Jacobson, and W. Lloyd. PRObE: A thousand-node experimental cluster for computer systems research. USENIX; login, 38, 2013.
    • (2013) USENIX , vol.38
    • Gibson, G.1    Grider, G.2    Jacobson, A.3    Lloyd, W.4
  • 12
    • 84858064738 scopus 로고    scopus 로고
    • Parallel gibbs sampling: From colored fields to thin junction trees
    • J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin. Parallel gibbs sampling: From colored fields to thin junction trees. In AISTATS, 2011.
    • (2011) AISTATS
    • Gonzalez, J.1    Low, Y.2    Gretton, A.3    Guestrin, C.4
  • 13
    • 85072980230 scopus 로고    scopus 로고
    • PowerGraph: Distributed graph-parallel computation on natural graphs
    • J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: Distributed graph-parallel computation on natural graphs. In OSDI, 2012.
    • (2012) OSDI
    • Gonzalez, J.1    Low, Y.2    Gu, H.3    Bickson, D.4    Guestrin, C.5
  • 21
    • 84877770112 scopus 로고    scopus 로고
    • Feature clustering for accelerating parallel coordinate descent
    • C. Scherrer, A. Tewari, M. Halappanavar, and D. Haglin. Feature clustering for accelerating parallel coordinate descent. In NIPS, 2012.
    • (2012) NIPS
    • Scherrer, C.1    Tewari, A.2    Halappanavar, M.3    Haglin, D.4
  • 24
    • 84874049380 scopus 로고    scopus 로고
    • Scalable coordinate descent approaches to parallel matrix factorization for recommender systems
    • H. Yu, C. Hsieh, S. Si, and I. Dhillon. Scalable coordinate descent approaches to parallel matrix factorization for recommender systems. In ICDM, 2012.
    • (2012) ICDM
    • Yu, H.1    Hsieh, C.2    Si, S.3    Dhillon, I.4
  • 26
    • 70350675904 scopus 로고    scopus 로고
    • Large-scale parallel collaborative filtering for the netflix prize
    • Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative filtering for the netflix prize. In AAIM, 2008.
    • (2008) AAIM
    • Zhou, Y.1    Wilkinson, D.2    Schreiber, R.3    Pan, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.