메뉴 건너뛰기




Volumn 57, Issue 1, 2016, Pages 59-69

Blood-brain barrier leakage after status epilepticus in rapamycin-treated rats I: Magnetic resonance imaging

Author keywords

Blood brain barrier; Contrast enhanced magnetic resonance imaging; Epileptogenesis; Rapamycin; Status epilepticus; Temporal lobe epilepsy

Indexed keywords

AMINO ACID RECEPTOR STIMULATING AGENT; ANTICONVULSIVE AGENT; CONTRAST AGENT BR1; KAINIC ACID; PHOSPHOLIPID; RAPAMYCIN; SULFUR HEXAFLUORIDE;

EID: 84954078543     PISSN: 00139580     EISSN: 15281167     Source Type: Journal    
DOI: 10.1111/epi.13246     Document Type: Article
Times cited : (58)

References (27)
  • 1
    • 0021744512 scopus 로고
    • Immunohistochemical localization of extravasated serum albumin in the hippocampus of human subjects with partial and generalized epilepsies and epileptiform convulsions
    • Mihaly A, Bozoky B,. Immunohistochemical localization of extravasated serum albumin in the hippocampus of human subjects with partial and generalized epilepsies and epileptiform convulsions. Acta Neuropathol (Berl) 1984; 65: 25-34.
    • (1984) Acta Neuropathol (Berl) , vol.65 , pp. 25-34
    • Mihaly, A.1    Bozoky, B.2
  • 2
    • 33846629927 scopus 로고    scopus 로고
    • Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy
    • Van Vliet EA, da Costa Araújo S, Redeker S, et al., Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 2007; 130: 521-534.
    • (2007) Brain , vol.130 , pp. 521-534
    • Van Vliet, E.A.1    Da Costa Araújo, S.2    Redeker, S.3
  • 3
    • 84866686711 scopus 로고    scopus 로고
    • Neuropathology of the blood-brain barrier and pharmaco-resistance in human epilepsy
    • Liu JY, Thom M, Catarino CB, et al., Neuropathology of the blood-brain barrier and pharmaco-resistance in human epilepsy. Brain 2012; 135: 3115-3133.
    • (2012) Brain , vol.135 , pp. 3115-3133
    • Liu, J.Y.1    Thom, M.2    Catarino, C.B.3
  • 4
    • 34447630638 scopus 로고    scopus 로고
    • Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy
    • Rigau V, Morin M, Rousset MC, et al., Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain 2007; 130: 1942-1956.
    • (2007) Brain , vol.130 , pp. 1942-1956
    • Rigau, V.1    Morin, M.2    Rousset, M.C.3
  • 5
    • 0035565747 scopus 로고    scopus 로고
    • Frequent blood-brain barrier disruption in the human cerebral cortex
    • Tomkins O, Kaufer D, Korn A, et al., Frequent blood-brain barrier disruption in the human cerebral cortex. Cell Mol Neurobiol 2001; 21: 675-691.
    • (2001) Cell Mol Neurobiol , vol.21 , pp. 675-691
    • Tomkins, O.1    Kaufer, D.2    Korn, A.3
  • 6
    • 0020604035 scopus 로고
    • Regional patterns of blood-brain barrier breakdown during epileptiform seizures induced by various convulsive agents
    • Nitsch C, Klatzo I,. Regional patterns of blood-brain barrier breakdown during epileptiform seizures induced by various convulsive agents. J Neurol Sci 1983; 59: 305-322.
    • (1983) J Neurol Sci , vol.59 , pp. 305-322
    • Nitsch, C.1    Klatzo, I.2
  • 7
    • 0041695210 scopus 로고    scopus 로고
    • In the lithium-pilocarpine model of epilepsy, brain lesions are not linked to changes in blood-brain barrier permeability: An autoradiographic study in adult and developing rats
    • Leroy C, Roch C, Koning E, et al., In the lithium-pilocarpine model of epilepsy, brain lesions are not linked to changes in blood-brain barrier permeability: an autoradiographic study in adult and developing rats. Exp Neurol 2003; 182: 361-372.
    • (2003) Exp Neurol , vol.182 , pp. 361-372
    • Leroy, C.1    Roch, C.2    Koning, E.3
  • 8
    • 36549071601 scopus 로고    scopus 로고
    • Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy
    • Ravizza T, Gagliardi B, Noe F, et al., Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 2008; 29: 142-160.
    • (2008) Neurobiol Dis , vol.29 , pp. 142-160
    • Ravizza, T.1    Gagliardi, B.2    Noe, F.3
  • 9
    • 33846623307 scopus 로고    scopus 로고
    • TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis
    • Ivens S, Kaufer D, Flores LP, et al., TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 2007; 130: 535-547.
    • (2007) Brain , vol.130 , pp. 535-547
    • Ivens, S.1    Kaufer, D.2    Flores, L.P.3
  • 10
    • 4544312032 scopus 로고    scopus 로고
    • Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex
    • Seiffert E, Dreier JP, Ivens S, et al., Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 2004; 24: 7829-7836.
    • (2004) J Neurosci , vol.24 , pp. 7829-7836
    • Seiffert, E.1    Dreier, J.P.2    Ivens, S.3
  • 11
    • 78651369895 scopus 로고    scopus 로고
    • The role of inflammation in epilepsy
    • Vezzani A, French J, Bartfai T, et al., The role of inflammation in epilepsy. Nat Rev Neurol 2011; 7: 31-40.
    • (2011) Nat Rev Neurol , vol.7 , pp. 31-40
    • Vezzani, A.1    French, J.2    Bartfai, T.3
  • 12
    • 84869096277 scopus 로고    scopus 로고
    • Blood-brain barrier dysfunction and epilepsy: Pathophysiologic role and therapeutic approaches
    • Marchi N, Granata T, Ghosh C, et al., Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia 2012; 53: 1877-1886.
    • (2012) Epilepsia , vol.53 , pp. 1877-1886
    • Marchi, N.1    Granata, T.2    Ghosh, C.3
  • 13
    • 13244255559 scopus 로고    scopus 로고
    • Focal cortical dysfunction and blood-brain barrier disruption in patients with Postconcussion syndrome
    • Korn A, Golan H, Melamed I, et al., Focal cortical dysfunction and blood-brain barrier disruption in patients with Postconcussion syndrome. J Clin Neurophysiol 2005; 22: 1-9.
    • (2005) J Clin Neurophysiol , vol.22 , pp. 1-9
    • Korn, A.1    Golan, H.2    Melamed, I.3
  • 14
    • 67650739168 scopus 로고    scopus 로고
    • Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis
    • Cacheaux LP, Ivens S, David Y, et al., Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis. J Neurosci 2009; 29: 8927-8935.
    • (2009) J Neurosci , vol.29 , pp. 8927-8935
    • Cacheaux, L.P.1    Ivens, S.2    David, Y.3
  • 15
    • 84863718111 scopus 로고    scopus 로고
    • Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation
    • Van Vliet EA, Forte G, Holtman L, et al., Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation. Epilepsia 2012; 53: 1254-1263.
    • (2012) Epilepsia , vol.53 , pp. 1254-1263
    • Van Vliet, E.A.1    Forte, G.2    Holtman, L.3
  • 16
    • 84890834335 scopus 로고    scopus 로고
    • Longitudinal assessment of blood-brain barrier leakage during epileptogenesis in rats. A quantitative MRI study
    • Van Vliet EA, Otte WM, Gorter JA, et al., Longitudinal assessment of blood-brain barrier leakage during epileptogenesis in rats. A quantitative MRI study. Neurobiol Dis 2014; 63: 74-84.
    • (2014) Neurobiol Dis , vol.63 , pp. 74-84
    • Van Vliet, E.A.1    Otte, W.M.2    Gorter, J.A.3
  • 17
    • 0015309163 scopus 로고
    • Modification of seizure activity by electrical stimulation. II. Motor seizure
    • Racine RJ,. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 1972; 32: 281-294.
    • (1972) Electroencephalogr Clin Neurophysiol , vol.32 , pp. 281-294
    • Racine, R.J.1
  • 18
    • 84883307079 scopus 로고    scopus 로고
    • Expression of sodium channel alpha subunits 1.1, 1.2 and 1.6 in rat hippocampus after kainic acid-induced epilepsy
    • Qiao X, Werkman TR, Gorter JA, et al., Expression of sodium channel alpha subunits 1.1, 1.2 and 1.6 in rat hippocampus after kainic acid-induced epilepsy. Epilepsy Res 2013; 106: 17-28.
    • (2013) Epilepsy Res , vol.106 , pp. 17-28
    • Qiao, X.1    Werkman, T.R.2    Gorter, J.A.3
  • 20
    • 66149190566 scopus 로고    scopus 로고
    • Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination
    • Narayanan SP, Flores AI, Wang F, et al., Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. J Neurosci 2009; 29: 6860-6870.
    • (2009) J Neurosci , vol.29 , pp. 6860-6870
    • Narayanan, S.P.1    Flores, A.I.2    Wang, F.3
  • 21
    • 84872606428 scopus 로고    scopus 로고
    • Effects of immunosuppressive therapy on wound healing
    • Bootun R,. Effects of immunosuppressive therapy on wound healing. Int Wound J 2013; 10: 98-104.
    • (2013) Int Wound J , vol.10 , pp. 98-104
    • Bootun, R.1
  • 22
    • 84866731714 scopus 로고    scopus 로고
    • Wound healing complications and the use of mammalian target of rapamycin inhibitors in kidney transplantation: A critical review of the literature
    • Nashan B, Citterio F,. Wound healing complications and the use of mammalian target of rapamycin inhibitors in kidney transplantation: a critical review of the literature. Transplantation 2012; 94: 547-561.
    • (2012) Transplantation , vol.94 , pp. 547-561
    • Nashan, B.1    Citterio, F.2
  • 24
    • 77955845741 scopus 로고    scopus 로고
    • Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy
    • Huang X, Zhang H, Yang J, et al., Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol Dis 2010; 40: 193-199.
    • (2010) Neurobiol Dis , vol.40 , pp. 193-199
    • Huang, X.1    Zhang, H.2    Yang, J.3
  • 25
    • 84856372774 scopus 로고    scopus 로고
    • Post-treatment with rapamycin does not prevent epileptogenesis in the amygdala stimulation model of temporal lobe epilepsy
    • Sliwa A, Plucinska G, Bednarczyk J, et al., Post-treatment with rapamycin does not prevent epileptogenesis in the amygdala stimulation model of temporal lobe epilepsy. Neurosci Lett 2012; 509: 105-109.
    • (2012) Neurosci Lett , vol.509 , pp. 105-109
    • Sliwa, A.1    Plucinska, G.2    Bednarczyk, J.3
  • 26
    • 0037097863 scopus 로고    scopus 로고
    • Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E
    • Fingar DC, Salama S, Tsou C, et al., Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 2002; 16: 1472-1487.
    • (2002) Genes Dev , vol.16 , pp. 1472-1487
    • Fingar, D.C.1    Salama, S.2    Tsou, C.3
  • 27
    • 77953218866 scopus 로고    scopus 로고
    • Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue
    • Houde VP, Brule S, Festuccia WT, et al., Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 2010; 59: 1338-1348.
    • (2010) Diabetes , vol.59 , pp. 1338-1348
    • Houde, V.P.1    Brule, S.2    Festuccia, W.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.