메뉴 건너뛰기




Volumn 136, Issue , 2015, Pages 45-58

Fast convergence of regularised Region-based Mixture of Gaussians for dynamic background modelling

Author keywords

Convergence rate; Dynamic background modelling; Generative models; Momentum; Region based Mixture of Gaussians

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; GRADIENT METHODS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MIXTURES; MOMENTUM;

EID: 84954026976     PISSN: 10773142     EISSN: 1090235X     Source Type: Journal    
DOI: 10.1016/j.cviu.2014.12.004     Document Type: Article
Times cited : (18)

References (50)
  • 1
    • 84898063054 scopus 로고    scopus 로고
    • A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos
    • A. Sobral, and A. Vacavant A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos Comput. Vis. Image Understan. 122 2014 4 21
    • (2014) Comput. Vis. Image Understan. , vol.122 , pp. 4-21
    • Sobral, A.1    Vacavant, A.2
  • 3
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • H. Robbins, and S. Monro A stochastic approximation method Ann. Math. Stat. 22 1951 400 407
    • (1951) Ann. Math. Stat. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 5
    • 0013309537 scopus 로고    scopus 로고
    • Online algorithms and stochastic approximations
    • Cambridge University Press
    • L. Bottou Online algorithms and stochastic approximations Online Learning and Neural Networks 1998 Cambridge University Press
    • (1998) Online Learning and Neural Networks
    • Bottou, L.1
  • 7
    • 77954796034 scopus 로고    scopus 로고
    • Introductory lectures on convex optimization
    • Y. Nesterov, Introductory lectures on convex optimization. A basic course, 2004.
    • (2004) A Basic Course
    • Nesterov, Y.1
  • 9
    • 80053143044 scopus 로고    scopus 로고
    • Recent advanced statistical background modeling for foreground detection: A systematic survey
    • T. Bouwmans Recent advanced statistical background modeling for foreground detection: a systematic survey Recent Patents Comput. Sci. 4 2011
    • (2011) Recent Patents Comput. Sci. , vol.4
    • Bouwmans, T.1
  • 12
    • 0002788893 scopus 로고
    • A new view of the EM algorithm that justifies incremental and other variants
    • R.M. Neal, G.E. Hinton, A new view of the EM algorithm that justifies incremental and other variants, in: Learning in Graphical Models, 1993, pp. 355-368.
    • (1993) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 13
    • 0033098507 scopus 로고    scopus 로고
    • Tracking colour objects using adaptive mixture models
    • S.J. McKenna, Y. Raja, and S. Gong Tracking colour objects using adaptive mixture models Image Vis. Comput. 17 1999 225 231
    • (1999) Image Vis. Comput. , vol.17 , pp. 225-231
    • McKenna, S.J.1    Raja, Y.2    Gong, S.3
  • 14
    • 0742303390 scopus 로고    scopus 로고
    • An improved adaptive background mixture model for real-time tracking with shadow detection
    • Springer
    • P. KaewTraKulPong, and R. Bowden An improved adaptive background mixture model for real-time tracking with shadow detection Advanced Video-Based Surveillance Systems 2001 Springer 135 144
    • (2001) Advanced Video-Based Surveillance Systems , pp. 135-144
    • Kaewtrakulpong, P.1    Bowden, R.2
  • 15
    • 18144412408 scopus 로고    scopus 로고
    • Effective Gaussian mixture learning for video background subtraction
    • D.-S. Lee Effective Gaussian mixture learning for video background subtraction IEEE Trans. Pattern Anal. Mach. Intell. 27 2005 827 832
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , pp. 827-832
    • Lee, D.-S.1
  • 17
    • 33645307063 scopus 로고    scopus 로고
    • Background and foreground modeling using nonparametric Kernel Density Estimation for visual surveillance
    • A. Elgammal, R. Duraiswami, D. Harwood, L.S. Davis, Background and foreground modeling using nonparametric Kernel Density Estimation for visual surveillance, in: PROCEEDINGS OF THE IEEE, 2002, pp. 1151-1163.
    • (2002) PROCEEDINGS of the IEEE , pp. 1151-1163
    • Elgammal, A.1    Duraiswami, R.2    Harwood, D.3    Davis, L.S.4
  • 19
    • 28044439637 scopus 로고    scopus 로고
    • Bayesian modeling of dynamic scenes for object detection
    • Y. Sheikh, and M. Shah Bayesian modeling of dynamic scenes for object detection IEEE Trans. Pattern Anal. Mach. Intell. 27 2005 1778 1792
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , pp. 1778-1792
    • Sheikh, Y.1    Shah, M.2
  • 25
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage thresholding algorithm for linear inverse problems
    • A. Beck, and M. Teboulle A fast iterative shrinkage thresholding algorithm for linear inverse problems SIAM J. Imag. Sci. 2 2009 183 202
    • (2009) SIAM J. Imag. Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 26
    • 70049111607 scopus 로고    scopus 로고
    • On accelerated proximal gradient methods for convex-concave optimization
    • P. Tseng On accelerated proximal gradient methods for convex-concave optimization SIAM J. Optim. 2008
    • (2008) SIAM J. Optim.
    • Tseng, P.1
  • 29
    • 0031285678 scopus 로고    scopus 로고
    • A new class of incremental gradient methods for least squares problems
    • D.P. Bertsekas A new class of incremental gradient methods for least squares problems SIAM J. Optim. 7 1996 913 926
    • (1996) SIAM J. Optim. , vol.7 , pp. 913-926
    • Bertsekas, D.P.1
  • 30
    • 67349220042 scopus 로고    scopus 로고
    • An online gradient method with momentum for two-layer feedforward neural networks
    • N. Zhang An online gradient method with momentum for two-layer feedforward neural networks Appl. Math. Comput. 212 2009 488 498
    • (2009) Appl. Math. Comput. , vol.212 , pp. 488-498
    • Zhang, N.1
  • 33
    • 84909965926 scopus 로고    scopus 로고
    • Momentum based level set method for accurate object tracking
    • H. Le, L. Hu, and Y. Feng Momentum based level set method for accurate object tracking Int. J. Intell. Syst. Appl. 2 2010 10 16
    • (2010) Int. J. Intell. Syst. Appl. , vol.2 , pp. 10-16
    • Le, H.1    Hu, L.2    Feng, Y.3
  • 34
  • 35
    • 84892592727 scopus 로고    scopus 로고
    • Scaled heavy-ball acceleration of the Richardson-Lucy algorithm for 3D microscopy image restoration
    • H. Wang, and P. Miller Scaled heavy-ball acceleration of the Richardson-Lucy algorithm for 3D microscopy image restoration IEEE Trans. Image Process. 23 2014 848 854
    • (2014) IEEE Trans. Image Process. , vol.23 , pp. 848-854
    • Wang, H.1    Miller, P.2
  • 38
    • 84864148498 scopus 로고    scopus 로고
    • Foreground detection by robust PCA solved via a linearized alternating direction method
    • Springer
    • C. Guyon, T. Bouwmans, and E.-H. Zahzah Foreground detection by robust PCA solved via a linearized alternating direction method Image Analysis and Recognition 2012 Springer 115 122
    • (2012) Image Analysis and Recognition , pp. 115-122
    • Guyon, C.1    Bouwmans, T.2    Zahzah, E.-H.3
  • 42
    • 0032222083 scopus 로고    scopus 로고
    • An incremental gradient(-projection) method with momentum term and adaptive stepsize rule
    • P. Tseng An incremental gradient(-projection) method with momentum term and adaptive stepsize rule SIAM J. Optim. 8 1998 506 531
    • (1998) SIAM J. Optim. , vol.8 , pp. 506-531
    • Tseng, P.1
  • 45
    • 84954029733 scopus 로고    scopus 로고
    • T. Huang, H. Peng, K. Zhang, Model selection for Gaussian mixture models, 2013.
    • T. Huang, H. Peng, K. Zhang, Model selection for Gaussian mixture models, 2013. 1301.3558.
  • 50
    • 84884222479 scopus 로고    scopus 로고
    • Hardware acceleration of background modeling in the compressed domain
    • S. Popa, D. Crookes, and P. Miller Hardware acceleration of background modeling in the compressed domain IEEE Trans. Inf. Forensics Secur. 8 2013 1562 1574
    • (2013) IEEE Trans. Inf. Forensics Secur. , vol.8 , pp. 1562-1574
    • Popa, S.1    Crookes, D.2    Miller, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.