-
1
-
-
84898063054
-
A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos
-
A. Sobral, and A. Vacavant A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos Comput. Vis. Image Understan. 122 2014 4 21
-
(2014)
Comput. Vis. Image Understan.
, vol.122
, pp. 4-21
-
-
Sobral, A.1
Vacavant, A.2
-
3
-
-
0000016172
-
A stochastic approximation method
-
H. Robbins, and S. Monro A stochastic approximation method Ann. Math. Stat. 22 1951 400 407
-
(1951)
Ann. Math. Stat.
, vol.22
, pp. 400-407
-
-
Robbins, H.1
Monro, S.2
-
4
-
-
84890863694
-
Spatial mixture of Gaussians for dynamic background modelling
-
S. Varadarajan, P. Miller, H. Zhou, Spatial mixture of Gaussians for dynamic background modelling, in: 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2013, pp. 63-68.
-
(2013)
10th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)
, pp. 63-68
-
-
Varadarajan, S.1
Miller, P.2
Zhou, H.3
-
5
-
-
0013309537
-
Online algorithms and stochastic approximations
-
Cambridge University Press
-
L. Bottou Online algorithms and stochastic approximations Online Learning and Neural Networks 1998 Cambridge University Press
-
(1998)
Online Learning and Neural Networks
-
-
Bottou, L.1
-
7
-
-
77954796034
-
Introductory lectures on convex optimization
-
Y. Nesterov, Introductory lectures on convex optimization. A basic course, 2004.
-
(2004)
A Basic Course
-
-
Nesterov, Y.1
-
8
-
-
84909944385
-
Regularised region-based mixture of Gaussians for dynamic background modelling
-
S. Varadarajan, H. Wang, P. Miller, H. Zhou, Regularised region-based mixture of Gaussians for dynamic background modelling, in: 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2014, pp. 19-24.
-
(2014)
11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)
, pp. 19-24
-
-
Varadarajan, S.1
Wang, H.2
Miller, P.3
Zhou, H.4
-
9
-
-
80053143044
-
Recent advanced statistical background modeling for foreground detection: A systematic survey
-
T. Bouwmans Recent advanced statistical background modeling for foreground detection: a systematic survey Recent Patents Comput. Sci. 4 2011
-
(2011)
Recent Patents Comput. Sci.
, vol.4
-
-
Bouwmans, T.1
-
12
-
-
0002788893
-
A new view of the EM algorithm that justifies incremental and other variants
-
R.M. Neal, G.E. Hinton, A new view of the EM algorithm that justifies incremental and other variants, in: Learning in Graphical Models, 1993, pp. 355-368.
-
(1993)
Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.M.1
Hinton, G.E.2
-
13
-
-
0033098507
-
Tracking colour objects using adaptive mixture models
-
S.J. McKenna, Y. Raja, and S. Gong Tracking colour objects using adaptive mixture models Image Vis. Comput. 17 1999 225 231
-
(1999)
Image Vis. Comput.
, vol.17
, pp. 225-231
-
-
McKenna, S.J.1
Raja, Y.2
Gong, S.3
-
14
-
-
0742303390
-
An improved adaptive background mixture model for real-time tracking with shadow detection
-
Springer
-
P. KaewTraKulPong, and R. Bowden An improved adaptive background mixture model for real-time tracking with shadow detection Advanced Video-Based Surveillance Systems 2001 Springer 135 144
-
(2001)
Advanced Video-Based Surveillance Systems
, pp. 135-144
-
-
Kaewtrakulpong, P.1
Bowden, R.2
-
15
-
-
18144412408
-
Effective Gaussian mixture learning for video background subtraction
-
D.-S. Lee Effective Gaussian mixture learning for video background subtraction IEEE Trans. Pattern Anal. Mach. Intell. 27 2005 827 832
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, pp. 827-832
-
-
Lee, D.-S.1
-
16
-
-
10044240378
-
Improved adaptive Gaussian mixture model for background subtraction
-
Z. Zivkovic, Improved adaptive Gaussian mixture model for background subtraction, in: ICPR 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004, vol. 2, 2004, pp. 28-31.
-
(2004)
ICPR 2004, Proceedings of the 17th International Conference on Pattern Recognition
, vol.2
, pp. 28-31
-
-
Zivkovic, Z.1
-
17
-
-
33645307063
-
Background and foreground modeling using nonparametric Kernel Density Estimation for visual surveillance
-
A. Elgammal, R. Duraiswami, D. Harwood, L.S. Davis, Background and foreground modeling using nonparametric Kernel Density Estimation for visual surveillance, in: PROCEEDINGS OF THE IEEE, 2002, pp. 1151-1163.
-
(2002)
PROCEEDINGS of the IEEE
, pp. 1151-1163
-
-
Elgammal, A.1
Duraiswami, R.2
Harwood, D.3
Davis, L.S.4
-
19
-
-
28044439637
-
Bayesian modeling of dynamic scenes for object detection
-
Y. Sheikh, and M. Shah Bayesian modeling of dynamic scenes for object detection IEEE Trans. Pattern Anal. Mach. Intell. 27 2005 1778 1792
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, pp. 1778-1792
-
-
Sheikh, Y.1
Shah, M.2
-
21
-
-
70449581328
-
Spatial-temporal nonparametric background subtraction in dynamic scenes
-
S. Zhang, H. Yao, S. Liu, Spatial-temporal nonparametric background subtraction in dynamic scenes, in: ICME 2009, IEEE International Conference on Multimedia and Expo, 2009, 2009, pp. 518-521.
-
(2009)
ICME 2009, IEEE International Conference on Multimedia and Expo
, pp. 518-521
-
-
Zhang, S.1
Yao, H.2
Liu, S.3
-
22
-
-
50849105799
-
Background subtraction for temporally irregular dynamic textures
-
G. Dalley, J. Migdal, W.E.L. Grimson, Background subtraction for temporally irregular dynamic textures, in: IEEE Workshop on Applications of Computer Vision, 2008, pp. 1-7.
-
(2008)
IEEE Workshop on Applications of Computer Vision
, pp. 1-7
-
-
Dalley, G.1
Migdal, J.2
Grimson, W.E.L.3
-
23
-
-
34547154612
-
Monocular video foreground/background segmentation by tracking spatial-color Gaussian mixture models
-
T. Yu, C. Zhang, M. Cohen, Y. Ruy, Y. Wu, Monocular video foreground/background segmentation by tracking spatial-color Gaussian mixture models, in: Proceedings of the IEEE Workshop on Motion and Video Computing, 2007.
-
(2007)
Proceedings of the IEEE Workshop on Motion and Video Computing
-
-
Yu, T.1
Zhang, C.2
Cohen, M.3
Ruy, Y.4
Wu, Y.5
-
24
-
-
0003543767
-
-
Inc., Publications Divisions, New York
-
B.T. Polyak, Introduction to Optimization, Optimization Software, Inc., Publications Divisions, New York, 1987.
-
(1987)
Introduction to Optimization, Optimization Software
-
-
Polyak, B.T.1
-
25
-
-
85014561619
-
A fast iterative shrinkage thresholding algorithm for linear inverse problems
-
A. Beck, and M. Teboulle A fast iterative shrinkage thresholding algorithm for linear inverse problems SIAM J. Imag. Sci. 2 2009 183 202
-
(2009)
SIAM J. Imag. Sci.
, vol.2
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
26
-
-
70049111607
-
On accelerated proximal gradient methods for convex-concave optimization
-
P. Tseng On accelerated proximal gradient methods for convex-concave optimization SIAM J. Optim. 2008
-
(2008)
SIAM J. Optim.
-
-
Tseng, P.1
-
29
-
-
0031285678
-
A new class of incremental gradient methods for least squares problems
-
D.P. Bertsekas A new class of incremental gradient methods for least squares problems SIAM J. Optim. 7 1996 913 926
-
(1996)
SIAM J. Optim.
, vol.7
, pp. 913-926
-
-
Bertsekas, D.P.1
-
30
-
-
67349220042
-
An online gradient method with momentum for two-layer feedforward neural networks
-
N. Zhang An online gradient method with momentum for two-layer feedforward neural networks Appl. Math. Comput. 212 2009 488 498
-
(2009)
Appl. Math. Comput.
, vol.212
, pp. 488-498
-
-
Zhang, N.1
-
31
-
-
84866285609
-
Real time robust l1 tracker using accelerated proximal gradient approach
-
C. Bao, Y. Wu, H. Ling, H. Ji, Real time robust l1 tracker using accelerated proximal gradient approach, in: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 1830-1837.
-
(2012)
2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1830-1837
-
-
Bao, C.1
Wu, Y.2
Ling, H.3
Ji, H.4
-
32
-
-
33749243756
-
Accelerated training of conditional random fields with stochastic gradient methods
-
S.V.N. Vishwanathan, N.N. Schraudolph, M.W. Schmidt, K.P. Murphy, Accelerated training of conditional random fields with stochastic gradient methods, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 969-976.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 969-976
-
-
Vishwanathan, S.V.N.1
Schraudolph, N.N.2
Schmidt, M.W.3
Murphy, K.P.4
-
33
-
-
84909965926
-
Momentum based level set method for accurate object tracking
-
H. Le, L. Hu, and Y. Feng Momentum based level set method for accurate object tracking Int. J. Intell. Syst. Appl. 2 2010 10 16
-
(2010)
Int. J. Intell. Syst. Appl.
, vol.2
, pp. 10-16
-
-
Le, H.1
Hu, L.2
Feng, Y.3
-
35
-
-
84892592727
-
Scaled heavy-ball acceleration of the Richardson-Lucy algorithm for 3D microscopy image restoration
-
H. Wang, and P. Miller Scaled heavy-ball acceleration of the Richardson-Lucy algorithm for 3D microscopy image restoration IEEE Trans. Image Process. 23 2014 848 854
-
(2014)
IEEE Trans. Image Process.
, vol.23
, pp. 848-854
-
-
Wang, H.1
Miller, P.2
-
37
-
-
84876498997
-
A fast foreground object detection algorithm using kernel density estimation
-
D. Li, L. Xu, E. Goodman, A fast foreground object detection algorithm using kernel density estimation, in: 2012 IEEE 11th International Conference on Signal Processing (ICSP), vol. 1, 2012, pp. 703-707.
-
(2012)
2012 IEEE 11th International Conference on Signal Processing (ICSP)
, vol.1
, pp. 703-707
-
-
Li, D.1
Xu, L.2
Goodman, E.3
-
38
-
-
84864148498
-
Foreground detection by robust PCA solved via a linearized alternating direction method
-
Springer
-
C. Guyon, T. Bouwmans, and E.-H. Zahzah Foreground detection by robust PCA solved via a linearized alternating direction method Image Analysis and Recognition 2012 Springer 115 122
-
(2012)
Image Analysis and Recognition
, pp. 115-122
-
-
Guyon, C.1
Bouwmans, T.2
Zahzah, E.-H.3
-
39
-
-
79851483756
-
Self-adaptive Gaussian mixture models for real-time video segmentation and background subtraction
-
N. Greggio, A. Bernardino, C. Laschi, P. Dario, J. Santos-Victor, Self-adaptive Gaussian mixture models for real-time video segmentation and background subtraction, in: IEEE 10th International Conference on Intelligent System Design and Applications, 2010.
-
(2010)
IEEE 10th International Conference on Intelligent System Design and Applications
-
-
Greggio, N.1
Bernardino, A.2
Laschi, C.3
Dario, P.4
Santos-Victor, J.5
-
42
-
-
0032222083
-
An incremental gradient(-projection) method with momentum term and adaptive stepsize rule
-
P. Tseng An incremental gradient(-projection) method with momentum term and adaptive stepsize rule SIAM J. Optim. 8 1998 506 531
-
(1998)
SIAM J. Optim.
, vol.8
, pp. 506-531
-
-
Tseng, P.1
-
43
-
-
84954025344
-
-
Y. Wang, P.-m. J. Fatih, P. Janusz, K. Yannick, B. Prakash, Change Detection 2014 Benchmark, 2014. < http://wordpress-jodoin.dmi.usherb.ca/results2014/ >.
-
(2014)
Change Detection 2014 Benchmark
-
-
Wang, Y.1
Fatih, P.-M.J.2
Janusz, P.3
Yannick, K.4
Prakash, B.5
-
45
-
-
84954029733
-
-
T. Huang, H. Peng, K. Zhang, Model selection for Gaussian mixture models, 2013.
-
T. Huang, H. Peng, K. Zhang, Model selection for Gaussian mixture models, 2013. 1301.3558.
-
-
-
-
47
-
-
0344551957
-
Segmenting foreground objects from a dynamic textured background via a robust Kalman filter
-
J. Zhong, S. Sclaroff, Segmenting foreground objects from a dynamic textured background via a robust Kalman filter, in: Proceedings. Ninth IEEE International Conference on Computer Vision, 2003, 2003, pp. 44-50.
-
(2003)
Proceedings. Ninth IEEE International Conference on Computer Vision, 2003
, pp. 44-50
-
-
Zhong, J.1
Sclaroff, S.2
-
48
-
-
2342627251
-
Foreground object detection from videos containing complex background
-
L. Li, W. Huang, I.Y.H. Gu, Q. Tian, Foreground object detection from videos containing complex background, in: Proceedings of the Eleventh ACM International Conference on Multimedia, 2003, pp. 2-10.
-
(2003)
Proceedings of the Eleventh ACM International Conference on Multimedia
, pp. 2-10
-
-
Li, L.1
Huang, W.2
Gu, I.Y.H.3
Tian, Q.4
-
49
-
-
0033285765
-
Wallflower: Principles and practice of background maintenance
-
K. Toyama, J. Krumm, B. Brumitt, B. Meyers, Wallflower: principles and practice of background maintenance, in: Seventh International Conference on Computer Vision, 1999, pp. 255-261.
-
(1999)
Seventh International Conference on Computer Vision
, pp. 255-261
-
-
Toyama, K.1
Krumm, J.2
Brumitt, B.3
Meyers, B.4
-
50
-
-
84884222479
-
Hardware acceleration of background modeling in the compressed domain
-
S. Popa, D. Crookes, and P. Miller Hardware acceleration of background modeling in the compressed domain IEEE Trans. Inf. Forensics Secur. 8 2013 1562 1574
-
(2013)
IEEE Trans. Inf. Forensics Secur.
, vol.8
, pp. 1562-1574
-
-
Popa, S.1
Crookes, D.2
Miller, P.3
|