메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

Combining location-and-scale batch effect adjustment with data cleaning by latent factor adjustment

Author keywords

Batch effects; Data preparation; High dimensional data; Latent factors; Prediction

Indexed keywords

FORECASTING;

EID: 84953931874     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-015-0870-z     Document Type: Article
Times cited : (35)

References (21)
  • 2
    • 84886752897 scopus 로고    scopus 로고
    • Batch effect removal methods for microarray gene expression data integration: a survey
    • Lazar C, Meganck S, Taminau J, Steenhoff D, Coletta A, Molter C, et al. Batch effect removal methods for microarray gene expression data integration: a survey. Brief Bioinformatics. 2012; 14(4):469-90.
    • (2012) Brief Bioinformatics , vol.14 , Issue.4 , pp. 469-490
    • Lazar, C.1    Meganck, S.2    Taminau, J.3    Steenhoff, D.4    Coletta, A.5    Molter, C.6
  • 3
    • 77955131271 scopus 로고    scopus 로고
    • A comparison of batch effect removal methods for enhancement of prediction performance using maqc-ii microarray gene expression data
    • Luo J, Schumacher M, Scherer A, Sanoudou D, Megherbi D, Davison T, et al. A comparison of batch effect removal methods for enhancement of prediction performance using maqc-ii microarray gene expression data. Pharmacogenomics J. 2010; 10:278-91.
    • (2010) Pharmacogenomics J , vol.10 , pp. 278-291
    • Luo, J.1    Schumacher, M.2    Scherer, A.3    Sanoudou, D.4    Megherbi, D.5    Davison, T.6
  • 4
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical bayes methods
    • Johnson WE, Rabinovic A, Li C. Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics. 2007; 8:118-27.
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Johnson, W.E.1    Rabinovic, A.2    Li, C.3
  • 5
    • 34848914038 scopus 로고    scopus 로고
    • Capturing heterogeneity in gene expression studies by surrogate variable analysis
    • Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007; 3:1724-35.
    • (2007) PLoS Genet , vol.3 , pp. 1724-1735
    • Leek, J.T.1    Storey, J.D.2
  • 6
    • 84907704976 scopus 로고    scopus 로고
    • Removing batch effects for prediction problems with frozen surrogate variable analysis
    • Parker HS, Bravo HC, Leek JT. Removing batch effects for prediction problems with frozen surrogate variable analysis. PeerJ. 2014; 2:561.
    • (2014) PeerJ , vol.2 , pp. 561
    • Parker, H.S.1    Bravo, H.C.2    Leek, J.T.3
  • 7
    • 79952230540 scopus 로고    scopus 로고
    • Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods
    • Chen C, Grennan K, Badner J, Zhang D, Gershon E, Jin L, et al. Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods. PLoS ONE. 2011; 6(2):17238.
    • (2011) PLoS ONE , vol.6 , Issue.2 , pp. 17238
    • Chen, C.1    Grennan, K.2    Badner, J.3    Zhang, D.4    Gershon, E.5    Jin, L.6
  • 9
    • 84901948036 scopus 로고    scopus 로고
    • Covariance adjustment for batch effect in gene expression data
    • Lee JA, Dobbin KK, Ahn J. Covariance adjustment for batch effect in gene expression data. Stat Med. 2014; 33:2681-95.
    • (2014) Stat Med , vol.33 , pp. 2681-2695
    • Lee, J.A.1    Dobbin, K.K.2    Ahn, J.3
  • 11
    • 34250232348 scopus 로고
    • EM algorithms for ML factor analysis
    • Rubin DB, Thayer DT. EM algorithms for ML factor analysis. Psychometrika. 1982; 47(1):69-76.
    • (1982) Psychometrika , vol.47 , Issue.1 , pp. 69-76
    • Rubin, D.B.1    Thayer, D.T.2
  • 12
    • 74049160758 scopus 로고    scopus 로고
    • A factor model approach to multiple testing under dependence
    • Friguet C, Kloareg M, Causeur D. A factor model approach to multiple testing under dependence. J Am Stat Assoc. 2009; 104(488):1406-15.
    • (2009) J Am Stat Assoc , vol.104 , Issue.488 , pp. 1406-1415
    • Friguet, C.1    Kloareg, M.2    Causeur, D.3
  • 13
    • 84928721918 scopus 로고    scopus 로고
    • Removing batch effects from purified plasma cell gene expression microarrays with modified combat
    • Stein CK, Qu P, Epstein J, Buros A, Rosenthal A, Crowley J, et al. Removing batch effects from purified plasma cell gene expression microarrays with modified combat. BMC Bioinformatics. 2015; 16:63.
    • (2015) BMC Bioinformatics , vol.16 , pp. 63
    • Stein, C.K.1    Qu, P.2    Epstein, J.3    Buros, A.4    Rosenthal, A.5    Crowley, J.6
  • 14
    • 67349139422 scopus 로고    scopus 로고
    • High-dimensional statistical measure for region-of-interest tracking
    • Boltz S, Debreuve E, Barlaud M. High-dimensional statistical measure for region-of-interest tracking. Trans Image Process. 2009; 18(6):1266-83.
    • (2009) Trans Image Process , vol.18 , Issue.6 , pp. 1266-1283
    • Boltz, S.1    Debreuve, E.2    Barlaud, M.3
  • 15
    • 42649134796 scopus 로고    scopus 로고
    • Merging two gene-expression studies via cross-platform normalization
    • Shabalin AA, Tjelmeland H, Fan C, Perou CM, Nobel AB. Merging two gene-expression studies via cross-platform normalization. Bioinformatics. 2008; 24(9):1154-60.
    • (2008) Bioinformatics , vol.24 , Issue.9 , pp. 1154-1160
    • Shabalin, A.A.1    Tjelmeland, H.2    Fan, C.3    Perou, C.M.4    Nobel, A.B.5
  • 16
    • 84954422317 scopus 로고    scopus 로고
    • Principal variance components analysis: Estimating batch effects in microarray gene expression data
    • In: Scherer A, editor., Chichester, UK: John Wiley & Sons
    • Li J, Bushel P, Chu T-M, Wolfinger RD. Principal variance components analysis: Estimating batch effects in microarray gene expression data In: Scherer A, editor. Batch Effects and Noise in Microarray Experiments: Sources and Solutions. Chichester, UK: John Wiley & Sons: 2009. p. 141-54.
    • (2009) Batch Effects and Noise in Microarray Experiments: Sources and Solutions. , pp. 141-154
    • Li, J.1    Bushel, P.2    Chu, T.-M.3    Wolfinger, R.D.4
  • 17
    • 31144472543 scopus 로고    scopus 로고
    • Fuzzy and randomized confidence intervals and p-values (with discussion)
    • Geyer CJ, Meeden GD. Fuzzy and randomized confidence intervals and p-values (with discussion). Stat Sci. 2005; 20(4):358-87.
    • (2005) Stat Sci , vol.20 , Issue.4 , pp. 358-387
    • Geyer, C.J.1    Meeden, G.D.2
  • 19
    • 84929465279 scopus 로고    scopus 로고
    • Ten simple rules for reducing overoptimistic reporting in methodological computational research
    • Boulesteix AL. Ten simple rules for reducing overoptimistic reporting in methodological computational research. PLoS Comput Biol. 2015; 11:1004191.
    • (2015) PLoS Comput Biol , vol.11 , pp. 1004191
    • Boulesteix, A.L.1
  • 20
    • 20444448822 scopus 로고    scopus 로고
    • PLS dimension reduction for classification with microarray data
    • Boulesteix AL. PLS dimension reduction for classification with microarray data. Stat Appl Genet Mol Biol. 2004; 3(1):33.
    • (2004) Stat Appl Genet Mol Biol , vol.3 , Issue.1 , pp. 33
    • Boulesteix, A.L.1
  • 21
    • 84953917083 scopus 로고    scopus 로고
    • Bapred: Batch Effect Removal (in Phenotype Prediction Using Gene Data)
    • Accessed 5 Jan 2016.
    • Hornung R, Causeur D. Bapred: Batch Effect Removal (in Phenotype Prediction Using Gene Data). 2015. R package version 0.2 http://cran.r-project.org/package=bapred. Accessed 5 Jan 2016.
    • (2015) R package version 0.2
    • Hornung, R.1    Causeur, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.