메뉴 건너뛰기




Volumn 31, Issue , 2016, Pages 14-25

An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery

Author keywords

FROM GLC; Landsat; MODIS; Remote sensing; Spatial and temporal data fusion

Indexed keywords

DATA FUSION; LINEAR REGRESSION; MEAN SQUARE ERROR; PIXELS; RADIOMETERS; REFLECTION; REGRESSION ANALYSIS; REMOTE SENSING; SATELLITE IMAGERY;

EID: 84953884516     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2015.12.005     Document Type: Article
Times cited : (70)

References (33)
  • 2
    • 84899680136 scopus 로고    scopus 로고
    • Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data
    • K. Jia, S.L. Liang, N. Zhang, X.Q. Wei, X.F. Gu, X. Zhao, Y.J. Yao, X.H. Xie Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data ISPRS J. Photogramm. Remote Sens. 93 2014 49 55
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.93 , pp. 49-55
    • Jia, K.1    Liang, S.L.2    Zhang, N.3    Wei, X.Q.4    Gu, X.F.5    Zhao, X.6    Yao, Y.J.7    Xie, X.H.8
  • 4
    • 84867335433 scopus 로고    scopus 로고
    • Information fusion techniques for change detection from multi-temporal remote sensing images
    • P.J. Du, S.C. Liu, J.S. Xia, Y.D. Zhao Information fusion techniques for change detection from multi-temporal remote sensing images Inf. Fusion 14 2013 19 27
    • (2013) Inf. Fusion , vol.14 , pp. 19-27
    • Du, P.J.1    Liu, S.C.2    Xia, J.S.3    Zhao, Y.D.4
  • 5
    • 75349089214 scopus 로고    scopus 로고
    • Estimation of spatial-temporal rainfall distribution using remote sensing techniques: A case study of Makanya catchment, Tanzania
    • K. Jennifer, Z.B. Su, T. Woldai, B. Maathuis Estimation of spatial-temporal rainfall distribution using remote sensing techniques: a case study of Makanya catchment, Tanzania Int. J. Appl. Earth Obs. Geoinf. 12 2010 S90 S99
    • (2010) Int. J. Appl. Earth Obs. Geoinf. , vol.12 , pp. S90-S99
    • Jennifer, K.1    Su, Z.B.2    Woldai, T.3    Maathuis, B.4
  • 6
    • 39749111391 scopus 로고    scopus 로고
    • Contribution of multispectral and multiternporal information from MODIS images to land cover classification
    • H. Carrao, P. Goncalves, M. Caetano Contribution of multispectral and multiternporal information from MODIS images to land cover classification Remote Sens. Environ. 112 2008 986 997
    • (2008) Remote Sens. Environ. , vol.112 , pp. 986-997
    • Carrao, H.1    Goncalves, P.2    Caetano, M.3
  • 7
    • 84899669459 scopus 로고    scopus 로고
    • Response of vegetation growth and productivity to spring climate indicators in the conterminous United States derived from satellite remote sensing data fusion
    • Y. Kim, J.S. Kimball, K. Didan, G.M. Henebry Response of vegetation growth and productivity to spring climate indicators in the conterminous United States derived from satellite remote sensing data fusion Agric. For. Meteorol. 194 2014 132 143
    • (2014) Agric. For. Meteorol. , vol.194 , pp. 132-143
    • Kim, Y.1    Kimball, J.S.2    Didan, K.3    Henebry, G.M.4
  • 8
    • 15744396383 scopus 로고    scopus 로고
    • Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data
    • P.S. Thenkabail, M. Schull, H. Turral Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data Remote Sens. Environ. 95 2005 317 341
    • (2005) Remote Sens. Environ. , vol.95 , pp. 317-341
    • Thenkabail, P.S.1    Schull, M.2    Turral, H.3
  • 9
    • 47049096762 scopus 로고    scopus 로고
    • Land cover classification of the North China Plain using MODIS-EVI time series
    • X. Zhang, R. Sun, B. Zhang, Q.X. Tong Land cover classification of the North China Plain using MODIS-EVI time series ISPRS J. Photogramm. Remote Sens. 63 2008 476 484
    • (2008) ISPRS J. Photogramm. Remote Sens. , vol.63 , pp. 476-484
    • Zhang, X.1    Sun, R.2    Zhang, B.3    Tong, Q.X.4
  • 11
    • 33746932125 scopus 로고    scopus 로고
    • On the blending of the Landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance
    • F. Gao, J. Masek, M. Schwaller, F. Hall On the blending of the Landsat and MODIS surface reflectance: predicting daily landsat surface reflectance IEEE Trans. Geosci. Remote Sens. 44 2006 2207 2218
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , pp. 2207-2218
    • Gao, F.1    Masek, J.2    Schwaller, M.3    Hall, F.4
  • 12
    • 44149102637 scopus 로고    scopus 로고
    • Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data
    • D.P. Roy, J. Ju, P. Lewis, C. Schaaf, F. Gao, M. Hansen, E. Lindquist Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data Remote Sens. Environ. 112 2008 3112 3130
    • (2008) Remote Sens. Environ. , vol.112 , pp. 3112-3130
    • Roy, D.P.1    Ju, J.2    Lewis, P.3    Schaaf, C.4    Gao, F.5    Hansen, M.6    Lindquist, E.7
  • 13
    • 67349083870 scopus 로고    scopus 로고
    • A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS
    • T. Hilker, M.A. Wulder, N.C. Coops, J. Linke, G. McDermid, J.G. Masek, F. Gao, J.C. White A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS Remote Sens. Environ. 113 2009 1613 1627
    • (2009) Remote Sens. Environ. , vol.113 , pp. 1613-1627
    • Hilker, T.1    Wulder, M.A.2    Coops, N.C.3    Linke, J.4    McDermid, G.5    Masek, J.G.6    Gao, F.7    White, J.C.8
  • 14
    • 84855425045 scopus 로고    scopus 로고
    • Enhancing temporal resolution of satellite imagery for public health studies: A case study of West Nile Virus outbreak in Los Angeles in 2007
    • H. Liu, Q.H. Weng Enhancing temporal resolution of satellite imagery for public health studies: a case study of West Nile Virus outbreak in Los Angeles in 2007 Remote Sens. Environ. 117 2012 57 71
    • (2012) Remote Sens. Environ. , vol.117 , pp. 57-71
    • Liu, H.1    Weng, Q.H.2
  • 15
    • 84913553639 scopus 로고    scopus 로고
    • Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia
    • M. Schmidt, R. Lucas, P. Bunting, J. Verbesselt, J. Armston Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia Remote Sens. Environ. 158 2015 156 168
    • (2015) Remote Sens. Environ. , vol.158 , pp. 156-168
    • Schmidt, M.1    Lucas, R.2    Bunting, P.3    Verbesselt, J.4    Armston, J.5
  • 16
    • 84855434548 scopus 로고    scopus 로고
    • Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology
    • J.J. Walker, K.M. de Beurs, R.H. Wynne, F. Gao Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology Remote Sens. Environ. 117 2012 381 393
    • (2012) Remote Sens. Environ. , vol.117 , pp. 381-393
    • Walker, J.J.1    De Beurs, K.M.2    Wynne, R.H.3    Gao, F.4
  • 17
    • 84894380258 scopus 로고    scopus 로고
    • Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data
    • Q.H. Weng, P. Fu, F. Gao Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data Remote Sens. Environ. 145 2014 55 67
    • (2014) Remote Sens. Environ. , vol.145 , pp. 55-67
    • Weng, Q.H.1    Fu, P.2    Gao, F.3
  • 18
    • 77956177720 scopus 로고    scopus 로고
    • An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions
    • X.L. Zhu, J. Chen, F. Gao, X.H. Chen, J.G. Masek An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions Remote Sens. Environ. 114 2010 2610 2623
    • (2010) Remote Sens. Environ. , vol.114 , pp. 2610-2623
    • Zhu, X.L.1    Chen, J.2    Gao, F.3    Chen, X.H.4    Masek, J.G.5
  • 19
    • 84875063135 scopus 로고    scopus 로고
    • Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection
    • I.V. Emelyanova, T.R. McVicar, T.G. Van Niel, L.T. Li, A. van Dijk Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: a framework for algorithm selection Remote Sens. Environ. 133 2013 193 209
    • (2013) Remote Sens. Environ. , vol.133 , pp. 193-209
    • Emelyanova, I.V.1    McVicar, T.R.2    Van Niel, T.G.3    Li, L.T.4    Van Dijk, A.5
  • 20
    • 36248982099 scopus 로고    scopus 로고
    • Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series
    • L. Busetto, M. Meroni, R. Colombo Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series Remote Sens. Environ. 112 2008 118 131
    • (2008) Remote Sens. Environ. , vol.112 , pp. 118-131
    • Busetto, L.1    Meroni, M.2    Colombo, R.3
  • 21
    • 0034629193 scopus 로고    scopus 로고
    • Retrieval of temporal profiles of reflectances from simulated and real NOAA-AVHRR data over heterogeneous landscapes
    • S. Cherchali, O. Amram, G. Flouzat Retrieval of temporal profiles of reflectances from simulated and real NOAA-AVHRR data over heterogeneous landscapes Int. J. Remote Sens. 21 2000 753 775
    • (2000) Int. J. Remote Sens. , vol.21 , pp. 753-775
    • Cherchali, S.1    Amram, O.2    Flouzat, G.3
  • 22
    • 33845637951 scopus 로고    scopus 로고
    • Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data
    • R. Houborg, H. Soegaard, E. Boegh Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data Remote Sens. Environ. 106 2007 39 58
    • (2007) Remote Sens. Environ. , vol.106 , pp. 39-58
    • Houborg, R.1    Soegaard, H.2    Boegh, E.3
  • 23
  • 24
    • 0032010497 scopus 로고    scopus 로고
    • Integration of high and low resolution NDVI data for monitoring vegetation in Mediterranean environments
    • F. Maselli, M.A. Gilabert, C. Conese Integration of high and low resolution NDVI data for monitoring vegetation in Mediterranean environments Remote Sens. Environ. 63 1998 208 218
    • (1998) Remote Sens. Environ. , vol.63 , pp. 208-218
    • Maselli, F.1    Gilabert, M.A.2    Conese, C.3
  • 25
    • 0027334540 scopus 로고
    • Linear mixing and the estimation of ground cover proportion
    • J.J. Settle, N.A. Drake Linear mixing and the estimation of ground cover proportion Int. J. Remote Sens. 14 1993 1159 1177
    • (1993) Int. J. Remote Sens. , vol.14 , pp. 1159-1177
    • Settle, J.J.1    Drake, N.A.2
  • 27
    • 0035128356 scopus 로고    scopus 로고
    • Definition of spatially variable spectral endmembers by locally calibrated multivariate regression analyses
    • F. Maselli Definition of spatially variable spectral endmembers by locally calibrated multivariate regression analyses Remote Sens. Environ. 75 2001 29 38
    • (2001) Remote Sens. Environ. , vol.75 , pp. 29-38
    • Maselli, F.1
  • 28
    • 84885433268 scopus 로고    scopus 로고
    • Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model
    • M.Q. Wu, Z. Niu, C.Y. Wang, C.Y. Wu, L. Wang Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model J. Appl. Remote Sens. 6 2012
    • (2012) J. Appl. Remote Sens. , vol.6
    • Wu, M.Q.1    Niu, Z.2    Wang, C.Y.3    Wu, C.Y.4    Wang, L.5
  • 29
    • 84929611081 scopus 로고    scopus 로고
    • High-resolution Leaf Area Index estimation from synthetic Landsat data generated by a spatial and temporal data fusion model
    • M.Q. Wu, C.Y. Wu, W.J. Huang, Z. Niu, C.Y. Wang High-resolution Leaf Area Index estimation from synthetic Landsat data generated by a spatial and temporal data fusion model Comput. Electron. Agric. 115 2015 1 11
    • (2015) Comput. Electron. Agric. , vol.115 , pp. 1-11
    • Wu, M.Q.1    Wu, C.Y.2    Huang, W.J.3    Niu, Z.4    Wang, C.Y.5
  • 30
    • 84938703250 scopus 로고    scopus 로고
    • Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring
    • M.Q. Wu, H. Li, W.J. Huang, Z. Niu, C.Y. Wang Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring Environ. Sci.-Processes Impacts 17 2015 1396 1404
    • (2015) Environ. Sci.-Processes Impacts , vol.17 , pp. 1396-1404
    • Wu, M.Q.1    Li, H.2    Huang, W.J.3    Niu, Z.4    Wang, C.Y.5
  • 31
    • 84907963084 scopus 로고    scopus 로고
    • A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion
    • C.M. Gevaert, F.J. Garcia-Haro A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion Remote Sens. Environ. 156 2015 34 44
    • (2015) Remote Sens. Environ. , vol.156 , pp. 34-44
    • Gevaert, C.M.1    Garcia-Haro, F.J.2
  • 32
    • 84997327221 scopus 로고    scopus 로고
    • Reconstruction of daily 30 m data from HJ CCD, GF-1 WFV, Landsat, and MODIS data for crop monitoring
    • M.Q. Wu, X.Y. Zhang, W.J. Huang, Z. Niu, C.Y. Wang, W. Li, P.Y. Hao Reconstruction of daily 30 m data from HJ CCD, GF-1 WFV, Landsat, and MODIS data for crop monitoring Remote Sens. 7 2015 16293 16314
    • (2015) Remote Sens. , vol.7 , pp. 16293-16314
    • Wu, M.Q.1    Zhang, X.Y.2    Huang, W.J.3    Niu, Z.4    Wang, C.Y.5    Li, W.6    Hao, P.Y.7
  • 33
    • 84939641103 scopus 로고    scopus 로고
    • Combining HJ CCD, GF-1 WFV and MODIS data to generate daily high spatial resolution synthetic data for environmental process monitoring
    • M.Q. Wu, W.J. Huang, Z. Niu, C.Y. Wang Combining HJ CCD, GF-1 WFV and MODIS data to generate daily high spatial resolution synthetic data for environmental process monitoring Int. J. Environ. Res. Public Health 12 2015 9920 9937
    • (2015) Int. J. Environ. Res. Public Health , vol.12 , pp. 9920-9937
    • Wu, M.Q.1    Huang, W.J.2    Niu, Z.3    Wang, C.Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.