메뉴 건너뛰기




Volumn 93, Issue , 2014, Pages 49-55

Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data

Author keywords

Classification; Finer resolution; Fusion; Land cover; Landsat 8; Temporal features

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA INTEGRATION; FUSION REACTIONS; REMOTE SENSING;

EID: 84899680136     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2014.04.004     Document Type: Article
Times cited : (121)

References (36)
  • 1
    • 20944440113 scopus 로고    scopus 로고
    • GLC2000: a new approach to global land cover mapping from Earth observation data
    • Bartholome E., Belward A.S. GLC2000: a new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26:1959-1977.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 1959-1977
    • Bartholome, E.1    Belward, A.S.2
  • 3
    • 84870666272 scopus 로고    scopus 로고
    • Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data
    • Brown J.C., Kastens J.H., Coutinho A.C., Victoria D.D., Bishop C.R. Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sens. Environ. 2013, 130:39-50.
    • (2013) Remote Sens. Environ. , vol.130 , pp. 39-50
    • Brown, J.C.1    Kastens, J.H.2    Coutinho, A.C.3    Victoria, D.D.4    Bishop, C.R.5
  • 4
    • 2942739366 scopus 로고    scopus 로고
    • A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter
    • Chen J., Jonsson P., Tamura M., Gu Z.H., Matsushita B., Eklundh L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 2004, 91:332-344.
    • (2004) Remote Sens. Environ. , vol.91 , pp. 332-344
    • Chen, J.1    Jonsson, P.2    Tamura, M.3    Gu, Z.H.4    Matsushita, B.5    Eklundh, L.6
  • 7
    • 67349093551 scopus 로고    scopus 로고
    • Classification accuracy comparison: hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority
    • Foody G.M. Classification accuracy comparison: hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sens. Environ. 2009, 113:1658-1663.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 1658-1663
    • Foody, G.M.1
  • 8
    • 0027007203 scopus 로고
    • Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification
    • Foody G.M., Campbell N.A., Trodd N.M., Wood T.F. Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogram. Eng. Remote Sens. 1992, 58:1335-1341.
    • (1992) Photogram. Eng. Remote Sens. , vol.58 , pp. 1335-1341
    • Foody, G.M.1    Campbell, N.A.2    Trodd, N.M.3    Wood, T.F.4
  • 10
    • 33746932125 scopus 로고    scopus 로고
    • On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance
    • Gao F., Masek J., Schwaller M., Hall F. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44:2207-2218.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , pp. 2207-2218
    • Gao, F.1    Masek, J.2    Schwaller, M.3    Hall, F.4
  • 12
    • 80051776207 scopus 로고    scopus 로고
    • Phenological classification of the United States: a geographic framework for extending multi-sensor time-series data
    • Gu Y.X., Brown J.F., Miura T., van Leeuwen W.J.D., Reed B.C. Phenological classification of the United States: a geographic framework for extending multi-sensor time-series data. Remote Sens. 2010, 2:526-544.
    • (2010) Remote Sens. , vol.2 , pp. 526-544
    • Gu, Y.X.1    Brown, J.F.2    Miura, T.3    van Leeuwen, W.J.D.4    Reed, B.C.5
  • 13
    • 0034655867 scopus 로고    scopus 로고
    • Global land cover classification at 1km spatial resolution using a classification tree approach
    • Hansen M.C., Defries R.S., Townshend J.R.G., Sohlberg R. Global land cover classification at 1km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21:1331-1364.
    • (2000) Int. J. Remote Sens. , vol.21 , pp. 1331-1364
    • Hansen, M.C.1    Defries, R.S.2    Townshend, J.R.G.3    Sohlberg, R.4
  • 14
    • 82155192938 scopus 로고    scopus 로고
    • Vegetation classification method with biochemical composition estimated from remote sensing data
    • Jia K., Wu B.F., Tian Y.C., Zeng Y., Li Q.Z. Vegetation classification method with biochemical composition estimated from remote sensing data. Int. J. Remote Sens. 2011, 32:9307-9325.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 9307-9325
    • Jia, K.1    Wu, B.F.2    Tian, Y.C.3    Zeng, Y.4    Li, Q.Z.5
  • 15
    • 84880109631 scopus 로고    scopus 로고
    • Crop classification using HJ satellite multispectral data in the North China Plain
    • Jia K., Wu B.F., Li Q.Z. Crop classification using HJ satellite multispectral data in the North China Plain. J. Appl. Remote Sens. 2013, 7:073576.
    • (2013) J. Appl. Remote Sens. , vol.7 , pp. 073576
    • Jia, K.1    Wu, B.F.2    Li, Q.Z.3
  • 16
    • 84896357172 scopus 로고    scopus 로고
    • Automatic land-cover update approach integrating iterative training sample selection and a Markov random field model
    • Jia K., Liang S., Wei X.Q., Zhang L., Yao Y.J., Gao S. Automatic land-cover update approach integrating iterative training sample selection and a Markov random field model. Remote Sens. Lett. 2014, 5:148-156.
    • (2014) Remote Sens. Lett. , vol.5 , pp. 148-156
    • Jia, K.1    Liang, S.2    Wei, X.Q.3    Zhang, L.4    Yao, Y.J.5    Gao, S.6
  • 17
    • 33645961267 scopus 로고    scopus 로고
    • Exploiting synergies of global land cover products for carbon cycle modeling
    • Jung M., Henkel K., Herold M., Churkina G. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens. Environ. 2006, 101:534-553.
    • (2006) Remote Sens. Environ. , vol.101 , pp. 534-553
    • Jung, M.1    Henkel, K.2    Herold, M.3    Churkina, G.4
  • 19
    • 0038345629 scopus 로고    scopus 로고
    • Land-cover classification of China: integrated analysis of AVHRR imagery and geophysical data
    • Liu J.Y., Zhuang D.F., Luo D., Xiao X. Land-cover classification of China: integrated analysis of AVHRR imagery and geophysical data. Int. J. Remote Sens. 2003, 24:2485-2500.
    • (2003) Int. J. Remote Sens. , vol.24 , pp. 2485-2500
    • Liu, J.Y.1    Zhuang, D.F.2    Luo, D.3    Xiao, X.4
  • 21
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • Lu D., Weng Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28:823-870.
    • (2007) Int. J. Remote Sens. , vol.28 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 22
    • 84879540635 scopus 로고    scopus 로고
    • The Landsat 8 is ready for geospatial science and technology researchers and practitioners
    • 191-191)
    • Lulla K., Nellis M.D., Rundquist B. The Landsat 8 is ready for geospatial science and technology researchers and practitioners. Geocarto Int. 2013, 28. 191-191).
    • (2013) Geocarto Int. , vol.28
    • Lulla, K.1    Nellis, M.D.2    Rundquist, B.3
  • 23
    • 34547133001 scopus 로고    scopus 로고
    • Hydrologic modeling uncertainty resulting from land cover misclassification
    • Miller S.N., Guertin D.P., Goodrich D.C. Hydrologic modeling uncertainty resulting from land cover misclassification. J. Am. Water Resour. Assoc. 2007, 43:1065-1075.
    • (2007) J. Am. Water Resour. Assoc. , vol.43 , pp. 1065-1075
    • Miller, S.N.1    Guertin, D.P.2    Goodrich, D.C.3
  • 25
    • 84864512878 scopus 로고    scopus 로고
    • High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm
    • Mutanga O., Adam E., Cho M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18:399-406.
    • (2012) Int. J. Appl. Earth Obs. Geoinf. , vol.18 , pp. 399-406
    • Mutanga, O.1    Adam, E.2    Cho, M.A.3
  • 26
    • 48749129153 scopus 로고    scopus 로고
    • Ecosystem disturbance, carbon, and climate
    • Running S.W. Ecosystem disturbance, carbon, and climate. Science 2008, 321:652-653.
    • (2008) Science , vol.321 , pp. 652-653
    • Running, S.W.1
  • 27
    • 0042553279 scopus 로고
    • Smoothing and differentiation of data by simplified least squares procedures
    • Savitzky A., Golay M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36:1627-1639.
    • (1964) Anal. Chem. , vol.36 , pp. 1627-1639
    • Savitzky, A.1    Golay, M.J.E.2
  • 28
    • 80051915406 scopus 로고    scopus 로고
    • Global croplands and their importance for water and food security in the twenty-first century: towards an ever green revolution that combines a second green revolution with a blue revolution
    • Thenkabail P.S. Global croplands and their importance for water and food security in the twenty-first century: towards an ever green revolution that combines a second green revolution with a blue revolution. Remote Sens. 2010, 2:2305-2312.
    • (2010) Remote Sens. , vol.2 , pp. 2305-2312
    • Thenkabail, P.S.1
  • 30
    • 0023823002 scopus 로고
    • Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations
    • Townshend J.R.G., Justice C.O. Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations. Int. J. Remote Sens. 1988, 9:187-236.
    • (1988) Int. J. Remote Sens. , vol.9 , pp. 187-236
    • Townshend, J.R.G.1    Justice, C.O.2
  • 33
    • 0036788924 scopus 로고    scopus 로고
    • Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data
    • Xiao X.M., Boles S., Liu J.Y., Zhuang D.F., Liu M.L. Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sens. Environ. 2002, 82:335-348.
    • (2002) Remote Sens. Environ. , vol.82 , pp. 335-348
    • Xiao, X.M.1    Boles, S.2    Liu, J.Y.3    Zhuang, D.F.4    Liu, M.L.5
  • 34
    • 84887533828 scopus 로고    scopus 로고
    • An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like data
    • Zhang W., Li A., Jin H., Bian J., Zhang Z., Lei G., Qin Z., Huang C. An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like data. Remote Sens. 2013, 5:5346-5368.
    • (2013) Remote Sens. , vol.5 , pp. 5346-5368
    • Zhang, W.1    Li, A.2    Jin, H.3    Bian, J.4    Zhang, Z.5    Lei, G.6    Qin, Z.7    Huang, C.8
  • 35
    • 84883406049 scopus 로고    scopus 로고
    • A data mining approach for evaluation of optimal time-series of MODIS data for land cover mapping at a regional level
    • Zhou F., Zhang A., Townley-Smith L. A data mining approach for evaluation of optimal time-series of MODIS data for land cover mapping at a regional level. ISPRS J. Photogram. Remote Sens. 2013, 84:114-129.
    • (2013) ISPRS J. Photogram. Remote Sens. , vol.84 , pp. 114-129
    • Zhou, F.1    Zhang, A.2    Townley-Smith, L.3
  • 36
    • 77956177720 scopus 로고    scopus 로고
    • An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions
    • Zhu X.L., Chen J., Gao F., Chen X.H., Masek J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114:2610-2623.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 2610-2623
    • Zhu, X.L.1    Chen, J.2    Gao, F.3    Chen, X.H.4    Masek, J.G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.