메뉴 건너뛰기




Volumn 48, Issue , 2014, Pages 15-23

Subpixel temporal spectral imaging

Author keywords

Hyperspectral; Remote sensing; Spatial; Spectral; Temporal; Tracking

Indexed keywords

MILITARY APPLICATIONS; REMOTE SENSING; SPECTROSCOPY; SURFACE DISCHARGES;

EID: 84906788682     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2014.04.005     Document Type: Article
Times cited : (10)

References (46)
  • 1
    • 84872004413 scopus 로고    scopus 로고
    • Spatial and temporal point tracking in real hyperspectral images
    • 10.1186/1687-6180-2011-30
    • B. Aminov, O. Nichtern, and S. Rotman Spatial and temporal point tracking in real hyperspectral images EURASIP J. Adv. Signal Process. 2011 2011 30 10.1186/1687-6180-2011-30
    • (2011) EURASIP J. Adv. Signal Process. , vol.2011 , pp. 30
    • Aminov, B.1    Nichtern, O.2    Rotman, S.3
  • 5
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing IEEE Trans. Signal Process. 57 11 2009 4418 4432
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.-H.1    Chi, C.-Y.2    Huang, Y.-M.3    Ma, W.-K.4
  • 6
    • 84887415911 scopus 로고    scopus 로고
    • A new growing method for simplex-based endmember extraction algorithm
    • C.-I. Chang, C.-C. Wu, W. Liu, and Y.-C. Ouyang A new growing method for simplex-based endmember extraction algorithm IEEE Trans. Geosci. Remote Sens. 44 10 2006 2804 2819
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.-I.1    Wu, C.-C.2    Liu, W.3    Ouyang, Y.-C.4
  • 9
    • 36348959745 scopus 로고    scopus 로고
    • A time-efficient method for anomaly detection in hyperspectral images
    • DOI 10.1109/TGRS.2007.909205
    • O. Duran, and M. Petrou A time-efficient method for anomaly detection in hyperspectral images IEEE Trans. Geosci. Remote Sens. 45 12 2007 3894 3904 (Pubitemid 350157827)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.12 , pp. 3894-3904
    • Duran, O.1    Petrou, M.2
  • 10
    • 58149483476 scopus 로고    scopus 로고
    • Spectral unmixing with negative and superunity abundances for subpixel anomaly detection
    • O. Duran, and M. Petrou Spectral unmixing with negative and superunity abundances for subpixel anomaly detection IEEE Geosci. Remote Sens. Lett. 6 1 2009 152 156
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.1 , pp. 152-156
    • Duran, O.1    Petrou, M.2
  • 11
    • 79957668159 scopus 로고    scopus 로고
    • Robust endmember extraction in the presence of anomalies
    • O. Duran, and M. Petrou Robust endmember extraction in the presence of anomalies IEEE Trans. Geosci. Remote Sens. 49 6 2011 1986 1996
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.6 , pp. 1986-1996
    • Duran, O.1    Petrou, M.2
  • 12
    • 66249130979 scopus 로고    scopus 로고
    • Automated hyperspectral cueing for civilian search and rescue
    • M. Eismann, A. Stocker, and N. Nasrabadi Automated hyperspectral cueing for civilian search and rescue Proc. IEEE 97 6 2009 1031 1055
    • (2009) Proc. IEEE , vol.97 , Issue.6 , pp. 1031-1055
    • Eismann, M.1    Stocker, A.2    Nasrabadi, N.3
  • 14
    • 84894010154 scopus 로고    scopus 로고
    • Hyperspectral measurements of natural signatures: Pedestrians
    • 10.1117/12.918297 83901C-83901C-8
    • J.A. Herweg, J.P. Kerekes, and M.T. Eismann Hyperspectral measurements of natural signatures: pedestrians Proc. SPIE 8390 2012 10.1117/12.918297 83901C-83901C-8
    • (2012) Proc. SPIE , vol.8390
    • Herweg, J.A.1    Kerekes, J.P.2    Eismann, M.T.3
  • 15
    • 0002889255 scopus 로고
    • Estimating the proportions of objects within a single resolution element of a multispectral scanner
    • University of Michigan, Ann Arbor
    • H. M. Horwitz, R. F. Nalepka, P. D. Hyde, J. P. Morgenstern, Estimating the proportions of objects within a single resolution element of a multispectral scanner, in: The 7th International Symposium on Remote Sensing of Environment, vol. 2, University of Michigan, Ann Arbor, 1971, pp. 1307-1320.
    • (1971) The 7th International Symposium on Remote Sensing of Environment , vol.2 , pp. 1307-1320
    • Horwitz, H.M.1    Nalepka, R.F.2    Hyde, P.D.3    Morgenstern, J.P.4
  • 16
    • 35348840225 scopus 로고    scopus 로고
    • Adaptive tracking of non-rigid objects based on color histograms and automatic parameter selection
    • DOI 10.1109/ACVMOT.2005.19, 4129592, Proceedings - IEEE Workshop on Motion and Video Computing, MOTION 2005
    • A. Jacquot, P. Sturm, O. Ruch, Adaptive tracking of non-rigid objects based on color histograms and automatic parameter selection, in: IEEE Workshop on Motion and Video Computing, vol. 2, 2005, pp. 103-109. (Pubitemid 47592237)
    • (2007) Proceedings - IEEE Workshop on Motion and Video Computing, MOTION 2005 , pp. 103-109
    • Jacquot, A.1    Sturm, P.2    Ruch, O.3
  • 17
    • 84906779305 scopus 로고    scopus 로고
    • A novel framework of combined particle filter and anomaly detection for multispectral and hyperspectral target tracking
    • M. Jawal, O. Duran, M. Petrou, A novel framework of combined particle filter and anomaly detection for multispectral and hyperspectral target tracking. in: International Conference on Space technology (ICST), 2009.
    • (2009) International Conference on Space Technology (ICST)
    • Jawal, M.1    Duran, O.2    Petrou, M.3
  • 20
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • DOI 10.1109/79.974718
    • D. Landgrebe Hyperspectral image data analysis IEEE Signal Process. Mag. 19 1 2002 17 28 (Pubitemid 34237205)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 23
    • 0035392132 scopus 로고    scopus 로고
    • Hyperspectral subpixel target detection using the linear mixing model
    • DOI 10.1109/36.934072, PII S0196289201054961
    • D. Manolakis, C. Siracusa, and G. Shaw Hyperspectral subpixel target detection using the linear mixing model IEEE Trans. Geosci. Remote Sens. 39 7 2001 1392 1409 (Pubitemid 32732655)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 1392-1409
    • Manolakis, D.1    Siracusa, C.2    Shaw, G.3
  • 24
    • 84861723546 scopus 로고    scopus 로고
    • Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data
    • G. Martin, and A. Plaza Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 5 2 2012 380 395
    • (2012) IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. , vol.5 , Issue.2 , pp. 380-395
    • Martin, G.1    Plaza, A.2
  • 25
    • 77955682014 scopus 로고    scopus 로고
    • A tutorial overview of anomaly detection in hyperspectral images
    • S. Matteoli, M. Diani, and G. Corsini A tutorial overview of anomaly detection in hyperspectral images IEEE Aerosp. Electron. Syst. Mag. 25 7 2010 5 28
    • (2010) IEEE Aerosp. Electron. Syst. Mag. , vol.25 , Issue.7 , pp. 5-28
    • Matteoli, S.1    Diani, M.2    Corsini, G.3
  • 26
    • 0033098507 scopus 로고    scopus 로고
    • Tracking colour objects using adaptive mixture models
    • S. McKenna, Y. Raja, and S. Gong Tracking colour objects using adaptive mixture models Image Vision Comput. 17 1999 225 231
    • (1999) Image Vision Comput. , vol.17 , pp. 225-231
    • McKenna, S.1    Raja, Y.2    Gong, S.3
  • 30
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J.M.P. Nascimento, and J. Dias Vertex component analysis: a fast algorithm to unmix hyperspectral data IEEE Trans. Geosci. Remote Sens. 43 4 2005 898 910 (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 31
    • 33644534797 scopus 로고    scopus 로고
    • Hyperspectral and broadband flir data fusion
    • SPIE Bruges, Belgium
    • M. Nicholas, M. James, and J. Nothard Hyperspectral and broadband flir data fusion Electro-Optical Remote Sensing vol. 5988 2005 SPIE Bruges, Belgium 119 130
    • (2005) Electro-Optical Remote Sensing , vol.5988 VOL. , pp. 119-130
    • Nicholas, M.1    James, M.2    Nothard, J.3
  • 33
    • 0032710687 scopus 로고    scopus 로고
    • Confidence in linear spectral unmixing of single pixels
    • M. Petrou, and P. Foschi Confidence in linear spectral unmixing of single pixels IEEE Trans. Geosci. Remote Sens. 37 1 1999 624 626
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.1 , pp. 624-626
    • Petrou, M.1    Foschi, P.2
  • 35
    • 80052318452 scopus 로고    scopus 로고
    • Foreword to the special issue on high performance computing in earth observation and remote sensing
    • A. Plaza, Q. Du, Y.-L. Chang, and R.L. King Foreword to the special issue on high performance computing in earth observation and remote sensing IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 4 3 2011 503 507
    • (2011) IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. , vol.4 , Issue.3 , pp. 503-507
    • Plaza, A.1    Du, Q.2    Chang, Y.-L.3    King, R.L.4
  • 36
    • 67649398795 scopus 로고    scopus 로고
    • On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images
    • J. Plaza, A. Plaza, R. Perez, and P. Martinez On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images Pattern Recogn. 42 11 2009 3032 3045
    • (2009) Pattern Recogn. , vol.42 , Issue.11 , pp. 3032-3045
    • Plaza, J.1    Plaza, A.2    Perez, R.3    Martinez, P.4
  • 38
    • 0025841255 scopus 로고
    • The least-squares mixing models to generate fraction images derived from remote sensing multispectral data
    • Y. Shimabukuro, and J. Smith The least-squares mixing models to generate fraction images derived from remote sensing multispectral data IEEE Trans. Geosci. Remote Sens. 29 1 1991 16 20
    • (1991) IEEE Trans. Geosci. Remote Sens. , vol.29 , Issue.1 , pp. 16-20
    • Shimabukuro, Y.1    Smith, J.2
  • 39
    • 79957664101 scopus 로고    scopus 로고
    • Tracking multiple vehicles in airborne image sequences of complex urban environments
    • I. Szottka, M. Butenuth, Tracking multiple vehicles in airborne image sequences of complex urban environments, in: Urban Remote Sensing Event (JURSE), 2011, pp. 13-16.
    • (2011) Urban Remote Sensing Event (JURSE) , pp. 13-16
    • Szottka, I.1    Butenuth, M.2
  • 40
    • 6344262005 scopus 로고    scopus 로고
    • Spectral and temporal linear mixing model for vegetation classification
    • DOI 10.1080/01431160410001680437
    • R. Tateishi, Y. Shimazaki, and P.D. Gunin Spectral and temporal linear mixing model for vegetation classification Int. J. Remote Sens. 25 20 2004 4203 4218 (Pubitemid 39403747)
    • (2004) International Journal of Remote Sensing , vol.25 , Issue.20 , pp. 4203-4218
    • Tateishi, R.1    Shimazaki, Y.2    Gunin, P.D.3
  • 41
    • 33947276369 scopus 로고    scopus 로고
    • Temporal target tracking in hyperspectral images
    • L. Varsano, I. Yatskaer, and S. Rotman Temporal target tracking in hyperspectral images Opt. Eng. 45 12 1999 126201
    • (1999) Opt. Eng. , vol.45 , Issue.12 , pp. 126201
    • Varsano, L.1    Yatskaer, I.2    Rotman, S.3
  • 43
    • 84966572660 scopus 로고    scopus 로고
    • Non-negative least-correlated component analysis for separation of dependent sources by volume maximization
    • 1
    • F. Wang, C. Chi, T. Chan, and Y. Wang Non-negative least-correlated component analysis for separation of dependent sources by volume maximization IEEE Trans. Pattern Anal. Mach. Intell. PP 99 2009 1 1
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.PP , Issue.99 , pp. 1
    • Wang, F.1    Chi, C.2    Chan, T.3    Wang, Y.4
  • 46
    • 67949098957 scopus 로고    scopus 로고
    • Spatial preprocessing for endmember extraction
    • M. Zortea, and A. Plaza Spatial preprocessing for endmember extraction IEEE Trans. Geosci. Remote Sens. 47 8 2009 2679 2693
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.