메뉴 건너뛰기




Volumn , Issue , 2012, Pages 3618-3625

Locality-constrained and spatially regularized coding for scene categorization

Author keywords

[No Author keywords available]

Indexed keywords

BAG OF WORDS; CODING STRATEGY; FEATURE SPACE; GRAPH-CUT; LOCAL FEATURE; NEIGHBORHOOD SYSTEMS; OBJECTIVE FUNCTIONS; OPTIMIZATION ALGORITHMS; PAIRWISE INTERACTION; SCENE CATEGORIZATION; SCENE CLASSIFICATION; SPATIAL CONTEXT; SPATIAL DOMAINS; SPATIAL LAYOUT; STATE-OF-THE-ART CODING;

EID: 84866713665     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6248107     Document Type: Conference Paper
Times cited : (100)

References (33)
  • 2
    • 77955993281 scopus 로고    scopus 로고
    • Learning mid-level features for recognition
    • 1, 2
    • Y. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-level features for recognition. In CVPR, 2010. 1, 2
    • (2010) CVPR
    • Boureau, Y.1    Bach, F.2    Lecun, Y.3    Ponce, J.4
  • 3
    • 77956502203 scopus 로고    scopus 로고
    • A theoretical analysis of feature pooling in vision algorithms
    • 2
    • Y. Boureau, J. Ponce, and Y. LeCun. A theoretical analysis of feature pooling in vision algorithms. In ICML, 2010. 2
    • (2010) ICML
    • Boureau, Y.1    Ponce, J.2    Lecun, Y.3
  • 4
    • 0035509961 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • 2, 4, 5
    • Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. PAMI, 2001. 2, 4, 5
    • (2001) PAMI
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 5
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • 6
    • K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2011. 6
    • (2011) BMVC
    • Chatfield, K.1    Lempitsky, V.2    Vedaldi, A.3    Zisserman, A.4
  • 6
    • 80053442434 scopus 로고    scopus 로고
    • The importance of encoding versus training with sparse coding and vector quantization
    • 1
    • A. Coates and A. Y. Ng. The importance of encoding versus training with sparse coding and vector quantization. In ICMA, 2011. 1
    • (2011) ICMA
    • Coates, A.1    Ng, A.Y.2
  • 8
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • 1
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 1
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 9
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • 2, 5, 7
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. CVIU, 2007. 2, 5, 7
    • (2007) CVIU
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 11
    • 77955994285 scopus 로고    scopus 로고
    • Local features are not lonely - Laplacian sparse coding for image classification
    • 2, 3, 6, 7
    • S. Gao, I. Tsang, L. Chia, and P. Zhao. Local features are not lonely - Laplacian sparse coding for image classification. In CVPR, 2010. 2, 3, 6, 7
    • (2010) CVPR
    • Gao, S.1    Tsang, I.2    Chia, L.3    Zhao, P.4
  • 12
    • 80052900995 scopus 로고    scopus 로고
    • Salient coding for image classification
    • 1, 2, 3, 4, 5, 6, 7
    • Y. Huang, K. Huang, Y. Yu, and T. Tan. Salient coding for image classification. In CVPR, 2011. 1, 2, 3, 4, 5, 6, 7
    • (2011) CVPR
    • Huang, Y.1    Huang, K.2    Yu, Y.3    Tan, T.4
  • 13
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • 5
    • V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? PAMI, 2004. 5
    • (2004) PAMI
    • Kolmogorov, V.1    Zabih, R.2
  • 14
    • 77955989374 scopus 로고    scopus 로고
    • Supervised learning of quantizer codebooks by information loss minimization
    • 1, 2
    • S. Lazebnik and M. Raginsky. Supervised learning of quantizer codebooks by information loss minimization. PAMI, 2008. 1, 2
    • (2008) PAMI
    • Lazebnik, S.1    Raginsky, M.2
  • 15
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • 2, 4, 5, 6, 7
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006. 2, 4, 5, 6, 7
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 16
  • 17
    • 50649103674 scopus 로고    scopus 로고
    • What, where and who? Classifying events by scene and object recognition
    • 2, 5, 6
    • L. J. Li and L. Fei-Fei. What, where and who? classifying events by scene and object recognition. In ICCV, 2007. 2, 5, 6
    • (2007) ICCV
    • Li, L.J.1    Fei-Fei, L.2
  • 19
    • 84887346213 scopus 로고    scopus 로고
    • Sift flow:Dense correspondence across scenes and its applications
    • 6
    • C. Liu, J. Yuen, and A. Torralba. Sift flow:dense correspondence across scenes and its applications. PAMI, 2010. 6
    • (2010) PAMI
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 20
    • 84863044549 scopus 로고    scopus 로고
    • In defense of softassignment coding
    • 1, 2, 4, 5, 6, 7
    • L. Liu, L. Wang, and X. Liu. In defense of softassignment coding. In ICCV, 2011. 1, 2, 4, 5, 6, 7
    • (2011) ICCV
    • Liu, L.1    Wang, L.2    Liu, X.3
  • 21
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scaleinvariant keypoints
    • 1
    • D. G. Lowe. Distinctive image features from scaleinvariant keypoints. IJCV, 2004. 1
    • (2004) IJCV
    • Lowe, D.G.1
  • 22
    • 51949103923 scopus 로고    scopus 로고
    • Discriminative learned dictionaries for local image analysis
    • 1, 2
    • J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative learned dictionaries for local image analysis. In CVPR, 2008. 1, 2
    • (2008) CVPR
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4    Zisserman, A.5
  • 23
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1?
    • 1
    • B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision research, 1997. 1
    • (1997) Vision Research
    • Olshausen, B.A.1    Field, D.J.2
  • 24
    • 80052904079 scopus 로고    scopus 로고
    • Are sparse representations really relevant for image classification?
    • 1
    • R. Rigamonti, M. A. Brown, and V. Lepetit. Are sparse representations really relevant for image classification? In CVPR, 2011. 1
    • (2011) CVPR
    • Rigamonti, R.1    Brown, M.A.2    Lepetit, V.3
  • 25
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • 2
    • R. E. Schapire. The strength of weak learnability. Machine learning, 1990. 2
    • (1990) Machine Learning
    • Schapire, R.E.1
  • 26
    • 0345414182 scopus 로고    scopus 로고
    • Video google: A text retrieval approach to object matching in videos
    • 1, 2, 4
    • J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In ICCV, 2003. 1, 2, 4
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2
  • 30
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • 1, 2, 4, 5, 6, 7
    • J.Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010. 1, 2, 4, 5, 6, 7
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 31
    • 84866644413 scopus 로고    scopus 로고
    • Beyond the Euclidean distance: Creating effective visual codebooks using the histogram intersection kernel
    • 4
    • J. Wu and J. M. Rehg. Beyond the Euclidean distance: Creating effective visual codebooks using the histogram intersection kernel. In CVPR, 2009. 4
    • (2009) CVPR
    • Wu, J.1    Rehg, J.M.2
  • 32
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • 2, 6
    • J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009. 2, 6
    • (2009) CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4
  • 33
    • 84863401481 scopus 로고    scopus 로고
    • Nonlinear learning using local coordinate coding
    • 2, 3
    • K. Yu, T. Zhang, and Y. Gong. Nonlinear learning using local coordinate coding. NIPS, 2009. 2, 3
    • (2009) NIPS
    • Yu, K.1    Zhang, T.2    Gong, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.