-
2
-
-
77955993281
-
Learning mid-level features for recognition
-
1, 2
-
Y. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-level features for recognition. In CVPR, 2010. 1, 2
-
(2010)
CVPR
-
-
Boureau, Y.1
Bach, F.2
Lecun, Y.3
Ponce, J.4
-
3
-
-
77956502203
-
A theoretical analysis of feature pooling in vision algorithms
-
2
-
Y. Boureau, J. Ponce, and Y. LeCun. A theoretical analysis of feature pooling in vision algorithms. In ICML, 2010. 2
-
(2010)
ICML
-
-
Boureau, Y.1
Ponce, J.2
Lecun, Y.3
-
4
-
-
0035509961
-
Fast approximate energy minimization via graph cuts
-
2, 4, 5
-
Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. PAMI, 2001. 2, 4, 5
-
(2001)
PAMI
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
5
-
-
84898420173
-
The devil is in the details: An evaluation of recent feature encoding methods
-
6
-
K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2011. 6
-
(2011)
BMVC
-
-
Chatfield, K.1
Lempitsky, V.2
Vedaldi, A.3
Zisserman, A.4
-
6
-
-
80053442434
-
The importance of encoding versus training with sparse coding and vector quantization
-
1
-
A. Coates and A. Y. Ng. The importance of encoding versus training with sparse coding and vector quantization. In ICMA, 2011. 1
-
(2011)
ICMA
-
-
Coates, A.1
Ng, A.Y.2
-
8
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
1
-
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 1
-
(2005)
CVPR
-
-
Dalal, N.1
Triggs, B.2
-
9
-
-
34047174674
-
Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
-
2, 5, 7
-
L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. CVIU, 2007. 2, 5, 7
-
(2007)
CVIU
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
11
-
-
77955994285
-
Local features are not lonely - Laplacian sparse coding for image classification
-
2, 3, 6, 7
-
S. Gao, I. Tsang, L. Chia, and P. Zhao. Local features are not lonely - Laplacian sparse coding for image classification. In CVPR, 2010. 2, 3, 6, 7
-
(2010)
CVPR
-
-
Gao, S.1
Tsang, I.2
Chia, L.3
Zhao, P.4
-
12
-
-
80052900995
-
Salient coding for image classification
-
1, 2, 3, 4, 5, 6, 7
-
Y. Huang, K. Huang, Y. Yu, and T. Tan. Salient coding for image classification. In CVPR, 2011. 1, 2, 3, 4, 5, 6, 7
-
(2011)
CVPR
-
-
Huang, Y.1
Huang, K.2
Yu, Y.3
Tan, T.4
-
13
-
-
0742286180
-
What energy functions can be minimized via graph cuts?
-
5
-
V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? PAMI, 2004. 5
-
(2004)
PAMI
-
-
Kolmogorov, V.1
Zabih, R.2
-
14
-
-
77955989374
-
Supervised learning of quantizer codebooks by information loss minimization
-
1, 2
-
S. Lazebnik and M. Raginsky. Supervised learning of quantizer codebooks by information loss minimization. PAMI, 2008. 1, 2
-
(2008)
PAMI
-
-
Lazebnik, S.1
Raginsky, M.2
-
15
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
2, 4, 5, 6, 7
-
S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006. 2, 4, 5, 6, 7
-
(2006)
CVPR
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
17
-
-
50649103674
-
What, where and who? Classifying events by scene and object recognition
-
2, 5, 6
-
L. J. Li and L. Fei-Fei. What, where and who? classifying events by scene and object recognition. In ICCV, 2007. 2, 5, 6
-
(2007)
ICCV
-
-
Li, L.J.1
Fei-Fei, L.2
-
19
-
-
84887346213
-
Sift flow:Dense correspondence across scenes and its applications
-
6
-
C. Liu, J. Yuen, and A. Torralba. Sift flow:dense correspondence across scenes and its applications. PAMI, 2010. 6
-
(2010)
PAMI
-
-
Liu, C.1
Yuen, J.2
Torralba, A.3
-
20
-
-
84863044549
-
In defense of softassignment coding
-
1, 2, 4, 5, 6, 7
-
L. Liu, L. Wang, and X. Liu. In defense of softassignment coding. In ICCV, 2011. 1, 2, 4, 5, 6, 7
-
(2011)
ICCV
-
-
Liu, L.1
Wang, L.2
Liu, X.3
-
21
-
-
3042535216
-
Distinctive image features from scaleinvariant keypoints
-
1
-
D. G. Lowe. Distinctive image features from scaleinvariant keypoints. IJCV, 2004. 1
-
(2004)
IJCV
-
-
Lowe, D.G.1
-
22
-
-
51949103923
-
Discriminative learned dictionaries for local image analysis
-
1, 2
-
J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative learned dictionaries for local image analysis. In CVPR, 2008. 1, 2
-
(2008)
CVPR
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
Zisserman, A.5
-
23
-
-
0030779611
-
Sparse coding with an overcomplete basis set: A strategy employed by v1?
-
1
-
B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision research, 1997. 1
-
(1997)
Vision Research
-
-
Olshausen, B.A.1
Field, D.J.2
-
24
-
-
80052904079
-
Are sparse representations really relevant for image classification?
-
1
-
R. Rigamonti, M. A. Brown, and V. Lepetit. Are sparse representations really relevant for image classification? In CVPR, 2011. 1
-
(2011)
CVPR
-
-
Rigamonti, R.1
Brown, M.A.2
Lepetit, V.3
-
25
-
-
0025448521
-
The strength of weak learnability
-
2
-
R. E. Schapire. The strength of weak learnability. Machine learning, 1990. 2
-
(1990)
Machine Learning
-
-
Schapire, R.E.1
-
26
-
-
0345414182
-
Video google: A text retrieval approach to object matching in videos
-
1, 2, 4
-
J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In ICCV, 2003. 1, 2, 4
-
(2003)
ICCV
-
-
Sivic, J.1
Zisserman, A.2
-
27
-
-
43249091850
-
A comparative study of energy minimization methods for Markov random fields with smoothness-based priors
-
4
-
R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, and C. Rother. A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. PAMI, 2008. 4
-
(2008)
PAMI
-
-
Szeliski, R.1
Zabih, R.2
Scharstein, D.3
Veksler, O.4
Kolmogorov, V.5
Agarwala, A.6
Tappen, M.7
Rother, C.8
-
28
-
-
77953185821
-
Visual word ambiguity
-
1, 2
-
J. van Gemert, C. Veenman, A. Smeulders, and J. Geusebroek. Visual word ambiguity. PAMI, 2009. 1, 2
-
(2009)
PAMI
-
-
Van Gemert, J.1
Veenman, C.2
Smeulders, A.3
Geusebroek, J.4
-
30
-
-
77955996870
-
Locality-constrained linear coding for image classification
-
1, 2, 4, 5, 6, 7
-
J.Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010. 1, 2, 4, 5, 6, 7
-
(2010)
CVPR
-
-
Wang, J.1
Yang, J.2
Yu, K.3
Lv, F.4
Huang, T.5
Gong, Y.6
-
31
-
-
84866644413
-
Beyond the Euclidean distance: Creating effective visual codebooks using the histogram intersection kernel
-
4
-
J. Wu and J. M. Rehg. Beyond the Euclidean distance: Creating effective visual codebooks using the histogram intersection kernel. In CVPR, 2009. 4
-
(2009)
CVPR
-
-
Wu, J.1
Rehg, J.M.2
-
32
-
-
70450209196
-
Linear spatial pyramid matching using sparse coding for image classification
-
2, 6
-
J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009. 2, 6
-
(2009)
CVPR
-
-
Yang, J.1
Yu, K.2
Gong, Y.3
Huang, T.4
-
33
-
-
84863401481
-
Nonlinear learning using local coordinate coding
-
2, 3
-
K. Yu, T. Zhang, and Y. Gong. Nonlinear learning using local coordinate coding. NIPS, 2009. 2, 3
-
(2009)
NIPS
-
-
Yu, K.1
Zhang, T.2
Gong, Y.3
|