메뉴 건너뛰기




Volumn 119, Issue 52, 2015, Pages 28934-28945

Mechanistic Study on Water Gas Shift Reaction on the Fe3O4 (111) Reconstructed Surface

Author keywords

[No Author keywords available]

Indexed keywords

CALCULATIONS; CHEMICAL ACTIVATION; CHEMICAL SHIFT; DENSITY FUNCTIONAL THEORY; DESORPTION; DISSOCIATION; SURFACE REACTIONS;

EID: 84953791012     PISSN: 19327447     EISSN: 19327455     Source Type: Journal    
DOI: 10.1021/acs.jpcc.5b09192     Document Type: Article
Times cited : (46)

References (59)
  • 1
    • 74849096484 scopus 로고    scopus 로고
    • Hydrogen Production by Methane Decomposition: A Review
    • Abbas, H. F.; Wan Daud, W. M. A. Hydrogen Production by Methane Decomposition: A Review Int. J. Hydrogen Energy 2010, 35, 1160-1190 10.1016/j.ijhydene.2009.11.036
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 1160-1190
    • Abbas, H.F.1    Wan Daud, W.M.A.2
  • 2
    • 0038957868 scopus 로고    scopus 로고
    • 2
    • 2 Appl. Catal., A 1999, 176, 159-176 10.1016/S0926-860X(98)00244-0
    • (1999) Appl. Catal., A , vol.176 , pp. 159-176
    • Armor, J.N.1
  • 3
    • 0018943730 scopus 로고
    • Methane-Steam Reforming
    • Vanhook, J. P. Methane-Steam Reforming Catal. Rev.: Sci. Eng. 1980, 21, 1-51 10.1080/03602458008068059
    • (1980) Catal. Rev.: Sci. Eng. , vol.21 , pp. 1-51
    • Vanhook, J.P.1
  • 4
    • 0001872997 scopus 로고
    • Ammonia Formation in the Catalytic Reduction of Nitric Oxide. III. the Role of Water Gas Shift, Reduction by Hydrocarbons, and Steam Reforming
    • Shelef, M.; Gandhi, H. S. Ammonia Formation in the Catalytic Reduction of Nitric Oxide. III. The Role of Water Gas Shift, Reduction by Hydrocarbons, and Steam Reforming Ind. Eng. Chem. Prod. Res. Dev. 1974, 13, 80-85 10.1021/i360049a016
    • (1974) Ind. Eng. Chem. Prod. Res. Dev. , vol.13 , pp. 80-85
    • Shelef, M.1    Gandhi, H.S.2
  • 5
    • 0020341349 scopus 로고
    • Methanol Synthesis
    • Klier, K. Methanol Synthesis Adv. Catal. 1982, 31, 243-313 10.1016/S0360-0564(08)60455-1
    • (1982) Adv. Catal. , vol.31 , pp. 243-313
    • Klier, K.1
  • 7
    • 0038485810 scopus 로고    scopus 로고
    • A New Generation of Water Gas Shift Catalysts for Fuel Cell Applications
    • Ruettinger, W.; Ilinich, O.; Farrauto, R. J. A New Generation of Water Gas Shift Catalysts for Fuel Cell Applications J. Power Sources 2003, 118, 61-65 10.1016/S0378-7753(03)00062-4
    • (2003) J. Power Sources , vol.118 , pp. 61-65
    • Ruettinger, W.1    Ilinich, O.2    Farrauto, R.J.3
  • 8
    • 84878729934 scopus 로고    scopus 로고
    • The Review of Cr-Free Fe-Based Catalysts for High-Temperature Water-Gas Shift Reactions
    • Lee, D. W.; Lee, M. S.; Lee, J. Y.; Kim, S.; Eom, H. J.; Moon, D. J.; Lee, K. Y. The Review of Cr-Free Fe-Based Catalysts for High-Temperature Water-Gas Shift Reactions Catal. Today 2013, 210, 2-9 10.1016/j.cattod.2012.12.012
    • (2013) Catal. Today , vol.210 , pp. 2-9
    • Lee, D.W.1    Lee, M.S.2    Lee, J.Y.3    Kim, S.4    Eom, H.J.5    Moon, D.J.6    Lee, K.Y.7
  • 9
    • 84880225761 scopus 로고    scopus 로고
    • High-Temperature Water Gas Shift Reaction over Fe/Al/Cu Oxide Based Catalysts Using Simulated Waste-Derived Synthesis Gas
    • Jeong, D. W.; Subramanian, V.; Shim, J. O.; Jang, W. J.; Seo, Y. C.; Roh, H. S.; Gu, J. H.; Lim, Y. T. High-Temperature Water Gas Shift Reaction over Fe/Al/Cu Oxide Based Catalysts Using Simulated Waste-Derived Synthesis Gas Catal. Lett. 2013, 143, 438-444 10.1007/s10562-013-0981-y
    • (2013) Catal. Lett. , vol.143 , pp. 438-444
    • Jeong, D.W.1    Subramanian, V.2    Shim, J.O.3    Jang, W.J.4    Seo, Y.C.5    Roh, H.S.6    Gu, J.H.7    Lim, Y.T.8
  • 10
    • 65949097301 scopus 로고    scopus 로고
    • 4-Based Catalysts for the High-Temperature Water Gas Shift Reaction
    • 4-Based Catalysts for the High-Temperature Water Gas Shift Reaction Int. J. Hydrogen Energy 2009, 34, 4475-4481 10.1016/j.ijhydene.2008.08.042
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 4475-4481
    • Martos, C.1    Dufour, J.2    Ruiz, A.3
  • 12
    • 1642369486 scopus 로고
    • Activity of an Iron Oxide-Chromium Oxide Water-Gas Shift Catalyst
    • Atwood, K.; Arnold, M. R. Activity of an Iron Oxide-Chromium Oxide Water-Gas Shift Catalyst Ind. Eng. Chem. 1953, 45, 424-426 10.1021/ie50518a048
    • (1953) Ind. Eng. Chem. , vol.45 , pp. 424-426
    • Atwood, K.1    Arnold, M.R.2
  • 13
    • 84864947518 scopus 로고    scopus 로고
    • The Energies of Formation and Mobilities of Cu Surface Species on Cu and ZnO in Methanol and Water Gas Shift Atmospheres Studied by DFT
    • Rasmussen, D. B.; Janssens, T. V. W.; Temel, B.; Bligaard, T.; Hinnemann, B.; Helveg, S.; Sehested, J. The Energies of Formation and Mobilities of Cu Surface Species on Cu and ZnO in Methanol and Water Gas Shift Atmospheres Studied by DFT J. Catal. 2012, 293, 205-214 10.1016/j.jcat.2012.07.001
    • (2012) J. Catal. , vol.293 , pp. 205-214
    • Rasmussen, D.B.1    Janssens, T.V.W.2    Temel, B.3    Bligaard, T.4    Hinnemann, B.5    Helveg, S.6    Sehested, J.7
  • 18
    • 0011911469 scopus 로고
    • Kinetics and Mechanism of the CO Shift on CuZnO: II. Kinetics of the Decomposition of Formic Acid
    • van Herwijnen, T.; Guczalski, R. T.; de Jong, W. A. Kinetics and Mechanism of the CO Shift on CuZnO: II. Kinetics of the Decomposition of Formic Acid J. Catal. 1980, 63, 94-101 10.1016/0021-9517(80)90062-7
    • (1980) J. Catal. , vol.63 , pp. 94-101
    • Van Herwijnen, T.1    Guczalski, R.T.2    De Jong, W.A.3
  • 19
    • 0002333611 scopus 로고
    • Kinetics and Mechanism of the CO Shift on Cu/ZnO: I. Kinetics of the Forward and Reverse CO Shift Reactions
    • van Herwijnen, T.; Jong, W. A. d. Kinetics and Mechanism of the CO Shift on Cu/ZnO: I. Kinetics of the Forward and Reverse CO Shift Reactions J. Catal. 1980, 63, 83-93 10.1016/0021-9517(80)90061-5
    • (1980) J. Catal. , vol.63 , pp. 83-93
    • Van Herwijnen, T.1    Jong, W.A.D.2
  • 20
    • 0042563652 scopus 로고
    • The Water-Gas Shift Reaction
    • Newsome, D. S. The Water-Gas Shift Reaction Catal. Rev.: Sci. Eng. 1980, 21, 275-318 10.1080/03602458008067535
    • (1980) Catal. Rev.: Sci. Eng. , vol.21 , pp. 275-318
    • Newsome, D.S.1
  • 21
    • 0001400262 scopus 로고
    • The Surface Cation Densities of Iron Oxide-Chromium Oxide Solid Solutions
    • Kung, M. C.; Kung, H. H. The Surface Cation Densities of Iron Oxide-Chromium Oxide Solid Solutions Surf. Sci. 1981, 104, 253-269 10.1016/0039-6028(81)90134-5
    • (1981) Surf. Sci. , vol.104 , pp. 253-269
    • Kung, M.C.1    Kung, H.H.2
  • 22
    • 0026902010 scopus 로고
    • Deactivation of the High-Temperature Water-Gas Shift Catalyst in Nonisothermal Conditions
    • Keiski, R. L.; Salmi, T. Deactivation of the High-Temperature Water-Gas Shift Catalyst in Nonisothermal Conditions Appl. Catal., A 1992, 87, 185-203 10.1016/0926-860X(92)80055-H
    • (1992) Appl. Catal., A , vol.87 , pp. 185-203
    • Keiski, R.L.1    Salmi, T.2
  • 23
    • 38349034403 scopus 로고
    • A Study of Catalytic Actions at Solid Surfaces. IV. the Interaction of Carbon Monoxide and Steam as Conditioned by Iron Oxide and by Copper
    • Armstrong, E. F.; Hilditch, T. P. A Study of Catalytic Actions at Solid Surfaces. IV. The Interaction of Carbon Monoxide and Steam as Conditioned by Iron Oxide and by Copper Proc. R. Soc. London, Ser. A 1920, 97, 265-273 10.1098/rspa.1920.0032
    • (1920) Proc. R. Soc. London, Ser. A , vol.97 , pp. 265-273
    • Armstrong, E.F.1    Hilditch, T.P.2
  • 24
    • 33751522283 scopus 로고    scopus 로고
    • Gold Catalysts for Pure Hydrogen Production in the Water-Gas Shift Reaction: Activity, Structure and Reaction Mechanism
    • Burch, R. Gold Catalysts for Pure Hydrogen Production in the Water-Gas Shift Reaction: Activity, Structure and Reaction Mechanism Phys. Chem. Chem. Phys. 2006, 8, 5483-5500 10.1039/b607837k
    • (2006) Phys. Chem. Chem. Phys. , vol.8 , pp. 5483-5500
    • Burch, R.1
  • 26
    • 38649129391 scopus 로고    scopus 로고
    • On the Mechanism of Low-Temperature Water Gas Shift Reaction on Copper
    • Gokhale, A. A.; Dumesic, J. A.; Mavrikakis, M. On the Mechanism of Low-Temperature Water Gas Shift Reaction on Copper J. Am. Chem. Soc. 2008, 130, 1402-1414 10.1021/ja0768237
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 1402-1414
    • Gokhale, A.A.1    Dumesic, J.A.2    Mavrikakis, M.3
  • 28
    • 0000304222 scopus 로고
    • Identification of Rate-Controlling Steps for the Water-Gas Shift Reaction over an Iron Oxide Catalyst
    • Oki, S.; Mezaki, R. Identification of Rate-Controlling Steps for the Water-Gas Shift Reaction over an Iron Oxide Catalyst J. Phys. Chem. 1973, 77, 447-452 10.1021/j100623a006
    • (1973) J. Phys. Chem. , vol.77 , pp. 447-452
    • Oki, S.1    Mezaki, R.2
  • 29
    • 0038279640 scopus 로고
    • A Dynamic Study of the Water-Gas Shift Reaction over an Industrial Ferrochrome Catalyst
    • Salmi, T.; Boström, S.; Lindfors, L.-E. A Dynamic Study of the Water-Gas Shift Reaction over an Industrial Ferrochrome Catalyst J. Catal. 1988, 112, 345-356 10.1016/0021-9517(88)90148-0
    • (1988) J. Catal. , vol.112 , pp. 345-356
    • Salmi, T.1    Boström, S.2    Lindfors, L.-E.3
  • 30
    • 0022863250 scopus 로고
    • Modelling of the High Temperature Water Gas Shift Reaction with Stationary and Transient Experiments
    • Salmi, T.; Lindfors, L. E.; Boström, S. Modelling of the High Temperature Water Gas Shift Reaction with Stationary and Transient Experiments Chem. Eng. Sci. 1986, 41, 929-936 10.1016/0009-2509(86)87177-9
    • (1986) Chem. Eng. Sci. , vol.41 , pp. 929-936
    • Salmi, T.1    Lindfors, L.E.2    Boström, S.3
  • 31
    • 0042131507 scopus 로고    scopus 로고
    • Stationary and Transient Kinetics of the High Temperature Water-Gas Shift Reaction
    • Keiski, R. L.; Salmi, T.; Niemisto, P.; Ainassaari, J.; Pohjola, V. J. Stationary and Transient Kinetics of the High Temperature Water-Gas Shift Reaction Appl. Catal., A 1996, 137, 349-370 10.1016/0926-860X(95)00315-0
    • (1996) Appl. Catal., A , vol.137 , pp. 349-370
    • Keiski, R.L.1    Salmi, T.2    Niemisto, P.3    Ainassaari, J.4    Pohjola, V.J.5
  • 32
    • 33750512556 scopus 로고    scopus 로고
    • Development of Chromium-Free Iron-Based Catalysts for High-Temperature Water-Gas Shift Reaction
    • Natesakhawat, S.; Wang, X. Q.; Zhang, L. Z.; Ozkan, U. S. Development of Chromium-Free Iron-Based Catalysts for High-Temperature Water-Gas Shift Reaction J. Mol. Catal. A: Chem. 2006, 260, 82-94 10.1016/j.molcata.2006.07.013
    • (2006) J. Mol. Catal. A: Chem. , vol.260 , pp. 82-94
    • Natesakhawat, S.1    Wang, X.Q.2    Zhang, L.Z.3    Ozkan, U.S.4
  • 34
    • 84862776814 scopus 로고    scopus 로고
    • 4 Surface Electronic Structures and Stability from GGA+U
    • 4 Surface Electronic Structures and Stability from GGA+U Surf. Sci. 2012, 606, 872-879 10.1016/j.susc.2012.02.003
    • (2012) Surf. Sci. , vol.606 , pp. 872-879
    • Yu, X.1    Huo, C.-F.2    Li, Y.-W.3    Wang, J.4    Jiao, H.5
  • 35
    • 84937964460 scopus 로고    scopus 로고
    • CO Oxidation on Gold-Supported Iron Oxides: New Insights into Strong Oxide-Metal Interactions
    • Yu, L.; Liu, Y.; Yang, F.; Evans, J.; Rodriguez, J. A.; Liu, P. CO Oxidation on Gold-Supported Iron Oxides: New Insights into Strong Oxide-Metal Interactions J. Phys. Chem. C 2015, 119, 16614-16622 10.1021/acs.jpcc.5b03315
    • (2015) J. Phys. Chem. C , vol.119 , pp. 16614-16622
    • Yu, L.1    Liu, Y.2    Yang, F.3    Evans, J.4    Rodriguez, J.A.5    Liu, P.6
  • 36
    • 52049098250 scopus 로고    scopus 로고
    • DFT Models for Active Sites on High Temperature Water-Gas Shift Catalysts
    • Van Natter, R. M.; Coleman, J. S.; Lund, C. R. F. DFT Models for Active Sites on High Temperature Water-Gas Shift Catalysts J. Mol. Catal. A: Chem. 2008, 292, 76-82 10.1016/j.molcata.2008.07.015
    • (2008) J. Mol. Catal. A: Chem. , vol.292 , pp. 76-82
    • Van Natter, R.M.1    Coleman, J.S.2    Lund, C.R.F.3
  • 38
    • 77956309022 scopus 로고    scopus 로고
    • Termination and Verwey Transition of the (111) Surface of Magnetite Studied by Scanning Tunneling Microscopy and First-Principles Calculations
    • Shimizu, T. K.; Jung, J.; Kato, H. S.; Kim, Y.; Kawai, M. Termination and Verwey Transition of the (111) Surface of Magnetite Studied by Scanning Tunneling Microscopy and First-Principles Calculations Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 235429 10.1103/PhysRevB.81.235429
    • (2010) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.81 , pp. 235429
    • Shimizu, T.K.1    Jung, J.2    Kato, H.S.3    Kim, Y.4    Kawai, M.5
  • 41
    • 4243943295 scopus 로고    scopus 로고
    • Generalized Gradient Approximation Made Simple
    • Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 1996, 77, 3865-3868 10.1103/PhysRevLett.77.3865
    • (1996) Phys. Rev. Lett. , vol.77 , pp. 3865-3868
    • Perdew, J.P.1    Burke, K.2    Ernzerhof, M.3
  • 42
    • 2442537377 scopus 로고    scopus 로고
    • Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set
    • Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169-11186 10.1103/PhysRevB.54.11169
    • (1996) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.54 , pp. 11169-11186
    • Kresse, G.1    Furthmüller, J.2
  • 43
    • 41949085799 scopus 로고    scopus 로고
    • Optimization Methods for Finding Minimum Energy Paths
    • Sheppard, D.; Terrell, R.; Henkelman, G. Optimization Methods for Finding Minimum Energy Paths J. Chem. Phys. 2008, 128, 134106 10.1063/1.2841941
    • (2008) J. Chem. Phys. , vol.128 , pp. 134106
    • Sheppard, D.1    Terrell, R.2    Henkelman, G.3
  • 44
    • 0034513054 scopus 로고    scopus 로고
    • A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths
    • Henkelman, G.; Uberuaga, B. P.; Jonsson, H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths J. Chem. Phys. 2000, 113, 9901-9904 10.1063/1.1329672
    • (2000) J. Chem. Phys. , vol.113 , pp. 9901-9904
    • Henkelman, G.1    Uberuaga, B.P.2    Jonsson, H.3
  • 48
    • 0001976251 scopus 로고
    • 2 over Chromia-Promoted Magnetite: Implications for Water-Gas Shift
    • 2 over Chromia-Promoted Magnetite: Implications for Water-Gas Shift J. Catal. 1987, 103, 65-78 10.1016/0021-9517(87)90093-5
    • (1987) J. Catal. , vol.103 , pp. 65-78
    • Tinkle, M.1    Dumesic, J.A.2
  • 49
    • 33845470180 scopus 로고
    • Use of Hydrogen/Water Gas Mixtures to Study Adsorption on Chromia-Promoted Magnetite at Water-Gas Shift Temperatures
    • Tinkle, M.; Dumesic, J. A. Use of Hydrogen/Water Gas Mixtures to Study Adsorption on Chromia-Promoted Magnetite at Water-Gas Shift Temperatures J. Phys. Chem. 1984, 88, 4127-4130 10.1021/j150662a054
    • (1984) J. Phys. Chem. , vol.88 , pp. 4127-4130
    • Tinkle, M.1    Dumesic, J.A.2
  • 50
    • 38949110274 scopus 로고    scopus 로고
    • Water-Gas Shift Activity of Au and Cu Nanoparticles Supported on Molybdenum Oxides
    • Rodriguez, J. A.; Liu, R.; Hrbek, J.; Perez, M.; Evans, J. Water-Gas Shift Activity of Au and Cu Nanoparticles Supported on Molybdenum Oxides J. Mol. Catal. A: Chem. 2008, 281, 59-65 10.1016/j.molcata.2007.07.032
    • (2008) J. Mol. Catal. A: Chem. , vol.281 , pp. 59-65
    • Rodriguez, J.A.1    Liu, R.2    Hrbek, J.3    Perez, M.4    Evans, J.5
  • 51
  • 52
    • 42449098616 scopus 로고    scopus 로고
    • Mechanism of the Water Gas Shift Reaction on Pt: First Principles, Experiments, and Microkinetic Modeling
    • Grabow, L. C.; Gokhale, A. A.; Evans, S. T.; Dumesic, J. A.; Mavrikakis, M. Mechanism of the Water Gas Shift Reaction on Pt: First Principles, Experiments, and Microkinetic Modeling J. Phys. Chem. C 2008, 112, 4608-4617 10.1021/jp7099702
    • (2008) J. Phys. Chem. C , vol.112 , pp. 4608-4617
    • Grabow, L.C.1    Gokhale, A.A.2    Evans, S.T.3    Dumesic, J.A.4    Mavrikakis, M.5
  • 53
    • 84907816177 scopus 로고    scopus 로고
    • 2(110) Support Surface
    • 2(110) Support Surface ACS Catal. 2014, 4, 3654-3662 10.1021/cs5009706
    • (2014) ACS Catal. , vol.4 , pp. 3654-3662
    • Ammal, S.C.1    Heyden, A.2
  • 54
    • 84902188036 scopus 로고    scopus 로고
    • Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts
    • Vecchietti, J.; Bonivardi, A.; Xu, W.; Stacchiola, D.; Delgado, J. J.; Calatayud, M.; Collins, S. E. Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts ACS Catal. 2014, 4, 2088-2096 10.1021/cs500323u
    • (2014) ACS Catal. , vol.4 , pp. 2088-2096
    • Vecchietti, J.1    Bonivardi, A.2    Xu, W.3    Stacchiola, D.4    Delgado, J.J.5    Calatayud, M.6    Collins, S.E.7
  • 55
    • 65649099410 scopus 로고    scopus 로고
    • A Theoretical Study of the Water Gas Shift Reaction Mechanism on Cu(111) Model System
    • Tang, Q. L.; Chen, Z. X.; He, X. A Theoretical Study of the Water Gas Shift Reaction Mechanism on Cu(111) Model System Surf. Sci. 2009, 603, 2138-2144 10.1016/j.susc.2009.04.011
    • (2009) Surf. Sci. , vol.603 , pp. 2138-2144
    • Tang, Q.L.1    Chen, Z.X.2    He, X.3
  • 57
    • 67650308083 scopus 로고    scopus 로고
    • Degree of Rate Control: How Much the Energies of Intermediates and Transition States Control Rates
    • Stegelmann, C.; Andreasen, A.; Campbell, C. T. Degree of Rate Control: How Much the Energies of Intermediates and Transition States Control Rates J. Am. Chem. Soc. 2009, 131, 8077-8082 10.1021/ja9000097
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 8077-8082
    • Stegelmann, C.1    Andreasen, A.2    Campbell, C.T.3
  • 59
    • 0001245602 scopus 로고
    • Mechanistic Structure of the Water-Gas Shift Reaction in the Vicinity of Chemical Equilibrium
    • Oki, S.; Mezaki, R. Mechanistic Structure of the Water-Gas Shift Reaction in the Vicinity of Chemical Equilibrium J. Phys. Chem. 1973, 77, 1601-1605 10.1021/j100632a001
    • (1973) J. Phys. Chem. , vol.77 , pp. 1601-1605
    • Oki, S.1    Mezaki, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.