-
1
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
A. BECK AND M. TEBOULLE, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2(2009), pp. 183-202.
-
(2009)
SIAM J. Imaging Sci.
, vol.2
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
3
-
-
84953304216
-
-
Technical report, University of California at Berkeley, Berkeley, CA
-
L. EL GHAOUI, V. VIALLON, AND T. RABBANI, Safe Feature Elimination for the Lasso, Technical report, University of California at Berkeley, Berkeley, CA, 2011.
-
(2011)
Safe Feature Elimination for the Lasso
-
-
El Ghaoui, L.1
Viallon, V.2
Rabbani, T.3
-
4
-
-
84912553418
-
Fast distributed coordinate descent for minimizing non-strongly convex losses
-
O. FERCOQ, Z. QU, P. RICHTÁRIK, AND M. TAKÁČ, Fast distributed coordinate descent for minimizing non-strongly convex losses, in IEEE International Workshop on Machine Learning for Signal Processing, 2014, pp 1-6.
-
(2014)
IEEE International Workshop on Machine Learning for Signal Processing
, pp. 1-6
-
-
Fercoq, O.1
Qu, Z.2
Richtárik, P.3
Takáč, M.4
-
7
-
-
77956625417
-
Randomized methods for linear constraints: Convergence rates and conditioning
-
D. LEVENTHAL AND A. S. LEWIS, Randomized methods for linear constraints: Convergence rates and conditioning, Math. Oper. Res., 35(2010), pp. 641-654.
-
(2010)
Math. Oper. Res.
, vol.35
, pp. 641-654
-
-
Leventhal, D.1
Lewis, A.S.2
-
9
-
-
84898982950
-
-
arXiv:1311.1873
-
J. LIU, S. J. WRIGHT, C. RÉ, V. BITTORF, AND S. SRIDHAR, An asynchronous parallel stochastic coordinate descent algorithm, arXiv:1311.1873, 2013.
-
(2013)
An Asynchronous Parallel Stochastic Coordinate Descent Algorithm
-
-
Liu, J.1
Wright, S.J.2
Ré, C.3
Bittorf, V.4
Sridhar, S.5
-
10
-
-
84925443414
-
-
Tech. report, Politehnica University of Bucharest, Bucharest, Romania
-
I. NECOARA AND D. CLIPICI, Distributed Coordinate Descent Methods for Composite Minimization, Tech. report, Politehnica University of Bucharest, Bucharest, Romania, 2013.
-
(2013)
Distributed Coordinate Descent Methods for Composite Minimization
-
-
Necoara, I.1
Clipici, D.2
-
11
-
-
84874622647
-
Efficient parallel coordinate descent algorithm for convex optimization problems with separable constraints: Application to distributed MPC
-
I. NECOARA AND D. CLIPICI, Efficient parallel coordinate descent algorithm for convex optimization problems with separable constraints: application to distributed MPC, J. Process Control, 23(2013), pp. 243-253.
-
(2013)
J. Process Control
, vol.23
, pp. 243-253
-
-
Necoara, I.1
Clipici, D.2
-
12
-
-
84933677783
-
-
Tech. report, Politehnica University of Bucharest, Bucharest, Romania
-
I. NECOARA, Y. NESTEROV, AND F. GLINEUR, Efficiency of randomized coordinate descent methods on optimization problems with linearly coupled constraints, Tech. report, Politehnica University of Bucharest, Bucharest, Romania, 2012.
-
(2012)
Efficiency of Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints
-
-
Necoara, I.1
Nesterov, Y.2
Glineur, F.3
-
13
-
-
34548480020
-
A method of solving a convex programming problem with convergence rate O (1/k2)
-
Y. NESTEROV, A method of solving a convex programming problem with convergence rate O (1/k2), Soviet Math. Dokl, 27(1983), pp. 372-376.
-
(1983)
Soviet Math. Dokl
, vol.27
, pp. 372-376
-
-
Nesterov, Y.1
-
14
-
-
17444406259
-
Smooth minimization of nonsmooth functions
-
Y. NESTEROV, Smooth minimization of nonsmooth functions, Math. Program., 103(2005), pp. 127-152.
-
(2005)
Math. Program.
, vol.103
, pp. 127-152
-
-
Nesterov, Y.1
-
15
-
-
84865692149
-
Efficiency of coordinate descent methods on huge-scale optimization problems
-
Y. NESTEROV, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM J. Optim., 22(2012), pp. 341-362.
-
(2012)
SIAM J. Optim.
, vol.22
, pp. 341-362
-
-
Nesterov, Y.1
-
16
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Scholkopf, C. Burges, and A. Smola, eds., MIT Press, Cambridge, MA
-
J. C. PLATT, Fast training of support vector machines using sequential minimal optimization, in Advances in Kernel Methods - Support Vector Learning, B. Scholkopf, C. Burges, and A. Smola, eds., MIT Press, Cambridge, MA, 1999, pp. 185-208.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
17
-
-
84953211741
-
-
Tech. report, University of Edinburgh, Edinburgh, UK
-
Z. QU, O. FERCOQ, AND P. RICHTÁRIK, Accelerated Coordinate Descent Method for Strongly Convex Functions, Tech. report, 05/2014, University of Edinburgh, Edinburgh, UK, 2014.
-
(2014)
Accelerated Coordinate Descent Method for Strongly Convex Functions
-
-
Qu, Z.1
Fercoq, O.2
Richtárik, P.3
-
19
-
-
84934779711
-
On optimal probabilities in stochastic coordinate descent methods
-
P. RICHTÁRIK AND M. TAKÁČ, On optimal probabilities in stochastic coordinate descent methods, Optim. Lett., 2015, DOI: 10.1007/s11590-015-0916-1.
-
(2015)
Optim. Lett.
-
-
Richtárik, P.1
Takáč, M.2
-
20
-
-
84897116612
-
Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
-
P. RICHTÁRIK AND M. TAKÁČ, Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function, Math. Program., 144(2014), pp. 1-38.
-
(2014)
Math. Program.
, vol.144
, pp. 1-38
-
-
Richtárik, P.1
Takáč, M.2
-
21
-
-
84958109123
-
Parallel coordinate descent methods for big data optimization problems
-
P. RICHTÁRIK AND M. TAKÁČ, Parallel coordinate descent methods for big data optimization problems, Math. Program., Ser. A, (2015), DOI: 10.1007/s10107-015-0901-6.
-
(2015)
Math. Program., Ser. A
-
-
Richtárik, P.1
Takáč, M.2
-
25
-
-
84945953952
-
-
J. STAMPER, A. NICULESCU-MIZIL, S. RITTER, G. J. GORDON, AND K. R. KOEDINGER, Bridge to algebra 2008-2009. Challenge data set from KDD cup 2010 educational data mining challenge, 2010; available online at http://pslcdatashop. web.cmu.edu/KDDCup/downloads. jsp.
-
(2010)
Bridge to Algebra 2008-2009. Challenge Data Set from KDD Cup 2010 Educational Data Mining Challenge
-
-
Stamper, J.1
Niculescu-Mizil, A.2
Ritter, S.3
Gordon, G.J.4
Koedinger, K.R.5
-
26
-
-
84897543082
-
Mini-batch primal and dual methods for SVMs
-
M. TAKÁČ, A. BIJRAL, P. RICHTÁRIK, AND N. SREBRO, Mini-batch primal and dual methods for SVMs, in Proceedings of the 30th International Conference on Machine Learning, Vol. 28, 2013, pp. 1022-1030.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning
, vol.28
, pp. 1022-1030
-
-
Takáč, M.1
Bijral, A.2
Richtárik, P.3
Srebro, N.4
-
28
-
-
70049111607
-
On accelerated proximal gradient methods for convex-concave optimization
-
submitted
-
P. TSENG, On accelerated proximal gradient methods for convex-concave optimization, SIAM J. Optim., 2008, submitted.
-
(2008)
SIAM J. Optim.
-
-
Tseng, P.1
-
29
-
-
84863879353
-
Coordinate descent algorithms for lasso penalized regression
-
T. T. WU AND K. LANGE, Coordinate descent algorithms for lasso penalized regression, Ann. Appl. Stat., (2008), pp. 224-244.
-
(2008)
Ann. Appl. Stat.
, pp. 224-244
-
-
Wu, T.T.1
Lange, K.2
|