-
1
-
-
0002662980
-
On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method
-
Akaike, H. 1959. On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method. Ann. Inst. Statist. Math. 11 1-16.
-
(1959)
Ann. Inst. Statist. Math.
, vol.11
, pp. 1-16
-
-
Akaike, H.1
-
2
-
-
24944496727
-
Randomized relaxation methods for the maximum feasible subsystem problem
-
M. Jünger, V. Kaibel, eds., Springer-Verlag, Berlin
-
Amaldi, E., P. Belotti, R. Hauser. 2005. Randomized relaxation methods for the maximum feasible subsystem problem. M. Jünger, V. Kaibel, eds. Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, Vol.3509. Springer-Verlag, Berlin, 249-264.
-
(2005)
Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science
, vol.3509
, pp. 249-264
-
-
Amaldi, E.1
Belotti, P.2
Hauser, R.3
-
3
-
-
0013467971
-
Convergence of random products of contractions in Hilbert space
-
Amemiya, I., T. Ando. 1965. Convergence of random products of contractions in Hilbert space. Acta. Sci. Math. 26 239-244.
-
(1965)
Acta. Sci. Math.
, vol.26
, pp. 239-244
-
-
Amemiya, I.1
Ando, T.2
-
4
-
-
0000746478
-
A norm convergence result on random products of relaxed projections in Hilbert space
-
Bauschke, H. H. 1995. A norm convergence result on random products of relaxed projections in Hilbert space. Trans. Amer. Math. Soc. 347 1365-1373.
-
(1995)
Trans. Amer. Math. Soc.
, vol.347
, pp. 1365-1373
-
-
Bauschke, H.H.1
-
5
-
-
33748894867
-
Projection algorithms: Results and open problems
-
D. Butnariu, Y. Censor, S. Reich, eds.
-
Bauschke, H. H. 2001. Projection algorithms: Results and open problems. D. Butnariu, Y. Censor, S. Reich, eds. Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, Elsevier, Amsterdam, 11-22.
-
(2001)
Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, Elsevier, Amsterdam
, pp. 11-22
-
-
Bauschke, H.H.1
-
6
-
-
0001448913
-
On the convergence of von Neumann's alternating projection algorithm for two sets
-
Bauschke, H. H., J. M. Borwein. 1993. On the convergence of von Neumann's alternating projection algorithm for two sets. Set-Valued Anal. 1 185-212.
-
(1993)
Set-Valued Anal.
, vol.1
, pp. 185-212
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
7
-
-
0030246542
-
On projection algorithms for solving convex feasibility problems
-
Bauschke, H. H., J. M. Borwein. 1996. On projection algorithms for solving convex feasibility problems. SIAM Rev. 38 367-426.
-
(1996)
SIAM Rev.
, vol.38
, pp. 367-426
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
9
-
-
5244239809
-
Random products of contractions in metric and Banach spaces
-
Bruck, R. E. 1982. Random products of contractions in metric and Banach spaces. J. Math. Anal. Appl. 88 319-332.
-
(1982)
J. Math. Anal. Appl.
, vol.88
, pp. 319-332
-
-
Bruck, R.E.1
-
10
-
-
0001345156
-
On condition numbers and the distance to the nearest ill-posed problem
-
Demmel, J. W. 1987. On condition numbers and the distance to the nearest ill-posed problem. Numerische Mathematik 51 251-289.
-
(1987)
Numerische Mathematik
, vol.51
, pp. 251-289
-
-
Demmel, J.W.1
-
11
-
-
84966237760
-
The probability that a numerical analysis problem is difficult
-
Demmel, J. W. 1988. The probability that a numerical analysis problem is difficult. Math. Comput. 50 449-480.
-
(1988)
Math. Comput.
, vol.50
, pp. 449-480
-
-
Demmel, J.W.1
-
14
-
-
0013499061
-
Random products of contractions in Banach spaces
-
Dye, J., M. A. Khamsi, S. Reich. 1991. Random products of contractions in Banach spaces. Trans. Amer. Math. Soc. 325 87-99.
-
(1991)
Trans. Amer. Math. Soc.
, vol.325
, pp. 87-99
-
-
Dye, J.1
Khamsi, M.A.2
Reich, S.3
-
15
-
-
0000802374
-
The approximation of one matrix by another of low rank
-
Eckart, C., G. Young. 1936. The approximation of one matrix by another of low rank. Psychometrika 1 211-218.
-
(1936)
Psychometrika
, vol.1
, pp. 211-218
-
-
Eckart, C.1
Young, G.2
-
18
-
-
21844502875
-
Approximations to solutions to systems of linear inequalities
-
Güler, O., A. J. Hoffman, U. Rothblum. 1995. Approximations to solutions to systems of linear inequalities. SIAM J. Matrix Anal. Appl. 16 688-696.
-
(1995)
SIAM J. Matrix Anal. Appl.
, vol.16
, pp. 688-696
-
-
Güler, O.1
Hoffman, A.J.2
Rothblum, U.3
-
19
-
-
31144464193
-
Reconciliation of various complexity and condition measures for linear programming problems and a generalization of Tardos' theorem
-
World Scientific, Singapore
-
Ho, J. C. K., L. Tunçel. 2002. Reconciliation of various complexity and condition measures for linear programming problems and a generalization of Tardos' theorem. Foundations Comput. Math.: Proc. Smalefest 2000, World Scientific, Singapore, 93-148.
-
(2002)
Foundations Comput. Math.: Proc. Smalefest 2000
, pp. 93-148
-
-
Ho, J.C.K.1
Tunçel, L.2
-
20
-
-
0000699491
-
On approximate solutions of systems of linear inequalities
-
Hoffman, A. J. 1952. On approximate solutions of systems of linear inequalities. J. Res. National Bureau Standards 49 263-265.
-
(1952)
J. Res. National Bureau Standards
, vol.49
, pp. 263-265
-
-
Hoffman, A.J.1
-
21
-
-
0004151494
-
-
Cambridge University Press, Cambridge, UK
-
Horn, R., C. Johnson. 1999. Matrix Analysis. Cambridge University Press, Cambridge, UK.
-
(1999)
Matrix Analysis
-
-
Horn, R.1
Johnson, C.2
-
22
-
-
70349376403
-
Metric subregularity and the proximal point method
-
Leventhal, D. 2009. Metric subregularity and the proximal point method. J. Math. Anal. Appl. 360 681-688.
-
(2009)
J. Math. Anal. Appl.
, vol.360
, pp. 681-688
-
-
Leventhal, D.1
-
23
-
-
70349387487
-
Local convergence for alternating and averaged nonconvex projections
-
Lewis, A. S., D. R. Luke, J. Malick. 2009. Local convergence for alternating and averaged nonconvex projections. Foundations Comput. Math. 9 485-513.
-
(2009)
Foundations Comput. Math.
, vol.9
, pp. 485-513
-
-
Lewis, A.S.1
Luke, D.R.2
Malick, J.3
-
24
-
-
38248998880
-
The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program
-
Li, W. 1993. The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program. Linear Algebra Appl. 187 15-40.
-
(1993)
Linear Algebra Appl.
, vol.187
, pp. 15-40
-
-
Li, W.1
-
25
-
-
0001518167
-
On the convergence of the LMS algorithm with adaptive learning rate for linear feedback networks
-
Luo, Z.-Q. 1991. On the convergence of the LMS algorithm with adaptive learning rate for linear feedback networks. Neural Comput. 3 226-245.
-
(1991)
Neural Comput.
, vol.3
, pp. 226-245
-
-
Luo, Z.-Q.1
-
26
-
-
0026678659
-
On the convergence of the coordinate descent method for convex differentiable minimization
-
Luo, Z.-Q., P. Tseng. 1992a. On the convergence of the coordinate descent method for convex differentiable minimization. J. Optim. Theory Appl. 72 7-35.
-
(1992)
J. Optim. Theory Appl.
, vol.72
, pp. 7-35
-
-
Luo, Z.-Q.1
Tseng, P.2
-
27
-
-
0026839499
-
On the linear convergence of descent methods for convex essentially smooth minimization
-
Luo, Z.-Q., P. Tseng. 1992b. On the linear convergence of descent methods for convex essentially smooth minimization. SIAM J. Control Optim. 30 408-425.
-
(1992)
SIAM J. Control Optim.
, vol.30
, pp. 408-425
-
-
Luo, Z.-Q.1
Tseng, P.2
-
28
-
-
0003095772
-
Error bound and convergence analysis of matrix splitting algorithms for the affine variational inequality problem
-
Luo, Z.-Q., P. Tseng. 1992c. Error bound and convergence analysis of matrix splitting algorithms for the affine variational inequality problem. SIAM J. Optim. 2 43-54.
-
(1992)
SIAM J. Optim.
, vol.2
, pp. 43-54
-
-
Luo, Z.-Q.1
Tseng, P.2
-
29
-
-
6244272639
-
Error bound and reduced gradient projection algorithms for convex minimization over a polyhedral set
-
Luo, Z.-Q., P. Tseng. 1993a. Error bound and reduced gradient projection algorithms for convex minimization over a polyhedral set. SIAM J. Optim. 3 43-59.
-
(1993)
SIAM J. Optim.
, vol.3
, pp. 43-59
-
-
Luo, Z.-Q.1
Tseng, P.2
-
30
-
-
0001357819
-
On the convergence rate of dual ascent methods for strictly convex minimization
-
Luo, Z.-Q., P. Tseng. 1993b. On the convergence rate of dual ascent methods for strictly convex minimization. Math. Oper. Res. 18 846-867.
-
(1993)
Math. Oper. Res.
, vol.18
, pp. 846-867
-
-
Luo, Z.-Q.1
Tseng, P.2
-
31
-
-
21344480786
-
Error bounds and convergence analysis of feasible descent methods: A general approachs
-
Luo, Z.-Q., P. Tseng. 1993c. Error bounds and convergence analysis of feasible descent methods: A general approach. Ann. Oper. Res. 46 157-178.
-
(1993)
Ann. Oper. Res.
, vol.46
, pp. 157-178
-
-
Luo, Z.-Q.1
Tseng, P.2
-
32
-
-
84973041797
-
Analysis of an approximate gradient projection method with applications to the back propagation algorithm
-
Luo, Z.-Q., P. Tseng. 1994. Analysis of an approximate gradient projection method with applications to the back propagation algorithm. Optim. Methods Software 4 85-101.
-
(1994)
Optim. Methods Software
, vol.4
, pp. 85-101
-
-
Luo, Z.-Q.1
Tseng, P.2
-
33
-
-
77956642913
-
-
CORE Discussion Paper 2010/2, Université Catholique de Louvain, Center for Operations Research and Economics, Louvain-la-Neuve, Belgium
-
Nesterov, Y. 2010. Efficiency of coordinate descent methods on huge-scale optimization problems. CORE Discussion Paper 2010/2, Université Catholique de Louvain, Center for Operations Research and Economics, Louvain-la-Neuve, Belgium.
-
(2010)
Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems
-
-
Nesterov, Y.1
-
34
-
-
14644391456
-
Hoffman's least error bounds for linear inequalities
-
Ng, K. F., X. Y. Zheng. 2004. Hoffman's least error bounds for linear inequalities. J. Global Optim. 30 391-403.
-
(2004)
J. Global Optim.
, vol.30
, pp. 391-403
-
-
Ng, K.F.1
Zheng, X.Y.2
-
35
-
-
0000150038
-
Error bounds in mathematical programming
-
Pang, J.-S. 1997. Error bounds in mathematical programming. Math. Programming 79 299-332.
-
(1997)
Math. Programming
, vol.79
, pp. 299-332
-
-
Pang, J.-S.1
-
36
-
-
0021201713
-
Decomposition through formalization in a product space
-
Pierra, G. 1984. Decomposition through formalization in a product space. Math. Programming 28 96-115.
-
(1984)
Math. Programming
, vol.28
, pp. 96-115
-
-
Pierra, G.1
-
37
-
-
0242294539
-
Random algorithms for solving convex inequalities
-
D. Butnariu, Y. Censor, S. Reich, eds. Elsevier, Amsterdam
-
Polyak, B. T. 2001. Random algorithms for solving convex inequalities. D. Butnariu, Y. Censor, S. Reich, eds. Inherently Parallel Algorithms in Feasibility and Other Applications. Elsevier, Amsterdam.
-
(2001)
Inherently Parallel Algorithms in Feasibility and Other Applications
-
-
Polyak, B.T.1
-
39
-
-
0028426653
-
Perturbation theory for linear programming
-
Renegar, J. 1994. Perturbation theory for linear programming. Math. Programming 65 73-91.
-
(1994)
Math. Programming
, vol.65
, pp. 73-91
-
-
Renegar, J.1
-
40
-
-
0000208672
-
Incorporating conditions measures into the complexity theory of linear programming
-
Renegar, J. 1995a. Incorporating conditions measures into the complexity theory of linear programming. SIAM J. Optim. 5 506-524.
-
(1995)
SIAM J. Optim.
, vol.5
, pp. 506-524
-
-
Renegar, J.1
-
41
-
-
58149364311
-
Linear programming, complexity theory and elementary functional analysis
-
Renegar, J. 1995b. Linear programming, complexity theory and elementary functional analysis. Math. Programming 70 279-351.
-
(1995)
Math. Programming
, vol.70
, pp. 279-351
-
-
Renegar, J.1
-
43
-
-
67349206945
-
A randomized Kaczmarz algorithm with exponential convergence
-
Strohmer, T., R. Vershynin. 2009. A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15 262-278.
-
(2009)
J. Fourier Anal. Appl.
, vol.15
, pp. 262-278
-
-
Strohmer, T.1
Vershynin, R.2
-
44
-
-
0000488063
-
On linear convergence of iterative methods for the variational inequality problem
-
Tseng, P. 1995. On linear convergence of iterative methods for the variational inequality problem. J. Comput. Appl. Math. 60 237-252.
-
(1995)
J. Comput. Appl. Math.
, vol.60
, pp. 237-252
-
-
Tseng, P.1
-
45
-
-
0034391880
-
Global error bounds for convex conic problems
-
Zhang, S. 2000. Global error bounds for convex conic problems. SIAM J. Optim. 10 836-851.
-
(2000)
SIAM J. Optim.
, vol.10
, pp. 836-851
-
-
Zhang, S.1
|