메뉴 건너뛰기




Volumn 149, Issue , 2015, Pages 90-96

Pattern recognition in chemometrics

Author keywords

Historic review; Linear discriminant analysis; Partial least squares discriminant analysis; Pattern recognition; SIMCA; Support vector machines

Indexed keywords

ACCURACY; ALGORITHM; ARTICLE; BAYES THEOREM; CALIBRATION; CHEMOMETRICS; CLUSTER ANALYSIS; MACHINE LEARNING; MASS SPECTROMETRY; METABOLOMICS; PARTIAL LEAST SQUARES REGRESSION; PATTERN RECOGNITION; PRIORITY JOURNAL; PROBABILITY; SCORING SYSTEM;

EID: 84952862363     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2015.06.012     Document Type: Article
Times cited : (123)

References (54)
  • 1
  • 8
    • 0000764772 scopus 로고
    • The Use of multiple measurements in taxonomic problems
    • Fisher R.A. The Use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7:179-188.
    • (1936) Ann. Eugen. , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 10
    • 76749142536 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • Brereton R.G., Lloyd G.R. Support vector machines for classification and regression. Analyst 2010, 135:230-267.
    • (2010) Analyst , vol.135 , pp. 230-267
    • Brereton, R.G.1    Lloyd, G.R.2
  • 11
    • 4243673189 scopus 로고
    • Computerized learning machines applied to chemical problems: interpretation of infrared spectrometry data
    • Kowalski B.R., Jurs P.C., Isenhour T.L., Reilly C.N. Computerized learning machines applied to chemical problems: interpretation of infrared spectrometry data. Anal. Chem. 1969, 41:1945-1949.
    • (1969) Anal. Chem. , vol.41 , pp. 1945-1949
    • Kowalski, B.R.1    Jurs, P.C.2    Isenhour, T.L.3    Reilly, C.N.4
  • 12
    • 4243700516 scopus 로고
    • An investigation of combined patterns from diverse analytical data using computerized learning machines
    • Kowalski B.R., Jurs P.C., Isenhour T.L., Reilly C.N. An investigation of combined patterns from diverse analytical data using computerized learning machines. Anal. Chem. 1969, 41:1949-1953.
    • (1969) Anal. Chem. , vol.41 , pp. 1949-1953
    • Kowalski, B.R.1    Jurs, P.C.2    Isenhour, T.L.3    Reilly, C.N.4
  • 14
    • 0016639582 scopus 로고
    • Forensic data analysis by pattern recognition. Categorization of white bond papers by elemental composition
    • Duewer D.L., Kowalski B.R. Forensic data analysis by pattern recognition. Categorization of white bond papers by elemental composition. Anal. Chem. 1975, 47:526-530.
    • (1975) Anal. Chem. , vol.47 , pp. 526-530
    • Duewer, D.L.1    Kowalski, B.R.2
  • 15
    • 0342318022 scopus 로고
    • Measurement analysis by pattern recognition
    • Kowalski B.R. Measurement analysis by pattern recognition. Anal. Chem. 1975, 47:1152A-1162A.
    • (1975) Anal. Chem. , vol.47 , pp. 1152A-1162A
    • Kowalski, B.R.1
  • 16
    • 0345686104 scopus 로고
    • Chemometrics: views and perspectives
    • Kowalski B.R. Chemometrics: views and perspectives. J. Chem. Inf. Comput. Sci. 1975, 15:201-203.
    • (1975) J. Chem. Inf. Comput. Sci. , vol.15 , pp. 201-203
    • Kowalski, B.R.1
  • 17
    • 0016940237 scopus 로고
    • Statistical and mathematical methods in analytical chemistry
    • Shoenfeld P.S., de Voe J.R. Statistical and mathematical methods in analytical chemistry. Anal. Chem. 1976, 48:403R-411R.
    • (1976) Anal. Chem. , vol.48 , pp. 403R-411R
    • Shoenfeld, P.S.1    de Voe, J.R.2
  • 18
    • 84952865030 scopus 로고
    • Application of principal component analysis on method evaluation studies - glucose
    • Carey R.N., Wold S., Westgard J.O. Application of principal component analysis on method evaluation studies - glucose. Clin. Chem. 1974, 7:891.
    • (1974) Clin. Chem. , vol.7 , pp. 891
    • Carey, R.N.1    Wold, S.2    Westgard, J.O.3
  • 19
    • 84935193999 scopus 로고
    • Pattern recognition applied to chemical data 2
    • Wold S. Pattern recognition applied to chemical data 2. Kem. Tidskr. 1975, 9:36-39.
    • (1975) Kem. Tidskr. , vol.9 , pp. 36-39
    • Wold, S.1
  • 20
    • 0016973661 scopus 로고
    • Pattern-recognition by means of disjoint principal components models
    • Wold S. Pattern-recognition by means of disjoint principal components models. Pattern Recogn. 1976, 8:127-139.
    • (1976) Pattern Recogn. , vol.8 , pp. 127-139
    • Wold, S.1
  • 22
    • 0000952525 scopus 로고
    • Classification: oldtimers and newcomers
    • Frank I.E., Friedman J.H. Classification: oldtimers and newcomers. J. Chemom. 1989, 3:439-475.
    • (1989) J. Chemom. , vol.3 , pp. 439-475
    • Frank, I.E.1    Friedman, J.H.2
  • 26
    • 25044454974 scopus 로고
    • UNEQ - a class modeling supervised pattern-recognition technique
    • Derde M.P., Massart D.L. UNEQ - a class modeling supervised pattern-recognition technique. Mikrochim. Acta 1986, 2:139-153.
    • (1986) Mikrochim. Acta , vol.2 , pp. 139-153
    • Derde, M.P.1    Massart, D.L.2
  • 31
    • 11144325691 scopus 로고
    • Partial least squares: a tutorial
    • Geladi P., Kowalski B.R. Partial least squares: a tutorial. Anal. Chim. Acta 1986, 185:1-19.
    • (1986) Anal. Chim. Acta , vol.185 , pp. 1-19
    • Geladi, P.1    Kowalski, B.R.2
  • 35
    • 67649338698 scopus 로고    scopus 로고
    • Elsevier, Amsterdam, S.D. Brown, R. Tauler, B. Walczak (Eds.)
    • Comprehensive Chemometrics 2009, Elsevier, Amsterdam. S.D. Brown, R. Tauler, B. Walczak (Eds.).
    • (2009) Comprehensive Chemometrics
  • 36
    • 79956325552 scopus 로고    scopus 로고
    • One class classifiers
    • Brereton R.G. One class classifiers. J. Chemom. 2011, 25:225-246.
    • (2011) J. Chemom. , vol.25 , pp. 225-246
    • Brereton, R.G.1
  • 38
    • 0000117331 scopus 로고
    • SIMCA: a method for analysing chemical data in terms of similarity and analogy
    • Wold S., Sjostrom M. SIMCA: a method for analysing chemical data in terms of similarity and analogy. ACS Symp. Ser. 1977, 52:243-282.
    • (1977) ACS Symp. Ser. , vol.52 , pp. 243-282
    • Wold, S.1    Sjostrom, M.2
  • 39
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • Baker M., Rayens W. Partial least squares for discrimination. J. Chemom. 2003, 17:166-173.
    • (2003) J. Chemom. , vol.17 , pp. 166-173
    • Baker, M.1    Rayens, W.2
  • 40
    • 84897566379 scopus 로고    scopus 로고
    • Partial least squares discriminant analysis: taking the magic away
    • Brereton R.G., Lloyd G.R. Partial least squares discriminant analysis: taking the magic away. J. Chemom. 2014, 28:213-225.
    • (2014) J. Chemom. , vol.28 , pp. 213-225
    • Brereton, R.G.1    Lloyd, G.R.2
  • 41
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition, data mining and knowledge
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition, data mining and knowledge. Discovery 1998, 2:121-167.
    • (1998) Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 43
    • 84951601886 scopus 로고
    • Cross-validatory estimation of number of components in factor and principal components models
    • Wold S. Cross-validatory estimation of number of components in factor and principal components models. Technometrics 1978, 20:397-405.
    • (1978) Technometrics , vol.20 , pp. 397-405
    • Wold, S.1
  • 45
    • 0023693726 scopus 로고
    • DASCO - a new classification method
    • Frank I.E. DASCO - a new classification method. Chemom. Intell. Lab. Syst. 1988, 4:215-222.
    • (1988) Chemom. Intell. Lab. Syst. , vol.4 , pp. 215-222
    • Frank, I.E.1
  • 46
    • 0002409366 scopus 로고
    • UNEQ - a disjoint modeling technique for pattern-recognition based on normal-distribution
    • Derde M.P., Massart D.L. UNEQ - a disjoint modeling technique for pattern-recognition based on normal-distribution. Anal. Chim. Acta 1986, 184:33-51.
    • (1986) Anal. Chim. Acta , vol.184 , pp. 33-51
    • Derde, M.P.1    Massart, D.L.2
  • 48
    • 57649157675 scopus 로고    scopus 로고
    • Comparison of performance of five common classifiers represented as boundary methods: Euclidean distance to centroids, linear discriminant analysis, quadratic discriminant analysis, learning vector quantization and support vector machines, as dependent on data structure
    • Dixon S.J., Brereton R.G. Comparison of performance of five common classifiers represented as boundary methods: Euclidean distance to centroids, linear discriminant analysis, quadratic discriminant analysis, learning vector quantization and support vector machines, as dependent on data structure. Chemom. Intell. Lab. Syst. 2009, 95:1-17.
    • (2009) Chemom. Intell. Lab. Syst. , vol.95 , pp. 1-17
    • Dixon, S.J.1    Brereton, R.G.2
  • 49
    • 84878650332 scopus 로고    scopus 로고
    • Editorial Reducing our irreproducibility
    • Editorial Reducing our irreproducibility. Nature 2013, 496:398.
    • (2013) Nature , vol.496 , pp. 398
  • 51
    • 84921340683 scopus 로고    scopus 로고
    • The chi-squared and multinormal distributions
    • Brereton R.G. The chi-squared and multinormal distributions. J. Chemom. 2015, 9:9-12.
    • (2015) J. Chemom. , vol.9 , pp. 9-12
    • Brereton, R.G.1
  • 52
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax D.M.J., Duin R.P.W. Support vector data description. Mach. Learn. 2004, 54:45-56.
    • (2004) Mach. Learn. , vol.54 , pp. 45-56
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 53
    • 33751417111 scopus 로고    scopus 로고
    • Consequences of sample size, variable selection, and model validation and optimisation, for predicting classification ability from analytical data
    • Brereton R.G. Consequences of sample size, variable selection, and model validation and optimisation, for predicting classification ability from analytical data. TrAC 2006, 11:1103-1111.
    • (2006) TrAC , vol.11 , pp. 1103-1111
    • Brereton, R.G.1
  • 54
    • 0003757758 scopus 로고
    • Statistical decision theory and Bayesian analysis
    • Springer-Verlag
    • Berger J.O. Statistical decision theory and Bayesian analysis. Springer Series in Statistics 1985, Springer-Verlag. Second ed.
    • (1985) Springer Series in Statistics
    • Berger, J.O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.