메뉴 건너뛰기




Volumn 24, Issue 2, 2012, Pages 523-540

Intrinsic adaptation in autonomous recurrent neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTATION; BIOLOGICAL MODEL; BRAIN; ENTROPY; LEARNING; LETTER; NERVE CELL; NERVE CELL NETWORK; NONLINEAR SYSTEM; PHYSIOLOGY; SYNAPSE; TIME;

EID: 84856403606     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00232     Document Type: Letter
Times cited : (23)

References (34)
  • 1
    • 24944538568 scopus 로고
    • Self-organized criticality in living systems
    • Adami, C. (1995). Self-organized criticality in living systems. Physics Letters A, 203, 29-32.
    • (1995) Physics Letters A , vol.203 , pp. 29-32
    • Adami, C.1
  • 2
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • Amari, S. I. (1998).Natural gradient works efficiently in learning. NeuralComputation, 10, 251-276.
    • (1998) NeuralComputation , vol.10 , pp. 251-276
    • Amari, S.I.1
  • 5
    • 5844290410 scopus 로고
    • Self-organized criticality: An explanation of the 1/f noise
    • Bak, P., Tang, C., & Wiesenfeld, K. (1987) Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters, 59, 381-384.
    • (1987) Physical Review Letters , vol.59 , pp. 381-384
    • Bak, P.1    Tang, C.2    Wiesenfeld, K.3
  • 7
    • 0038527404 scopus 로고    scopus 로고
    • Synaptic transmission: Functional autapses in the cortex
    • Bekkers, J. M. (2003). Synaptic transmission: Functional autapses in the cortex. Current Biology, 13, 433-435.
    • (2003) Current Biology , vol.13 , pp. 433-435
    • Bekkers, J.M.1
  • 8
    • 2942552269 scopus 로고    scopus 로고
    • Real-time computation at the edge of chaos in recurrent neural networks
    • Bertschinger, N., & Natschläger, T. (2004). Real-time computation at the edge of chaos in recurrent neural networks. Neural Computation, 16, 1413-1436.
    • (2004) Neural Computation , vol.16 , pp. 1413-1436
    • Bertschinger, N.1    Natschläger, T.2
  • 12
    • 77957565867 scopus 로고    scopus 로고
    • Emergent complex neural dynamics
    • Chialvo, D. R. (2010). Emergent complex neural dynamics. Nature Physics, 6, 744-750.
    • (2010) Nature Physics , vol.6 , pp. 744-750
    • Chialvo, D.R.1
  • 13
    • 0032053304 scopus 로고    scopus 로고
    • Self-organization and dynamics reduction in recurrent networks: Stimulus presentation and learning
    • Dauce, E., Quoy, M., Cessac, B., Doyon, B., & Samuelides, M. (1998). Self-organization and dynamics reduction in recurrent networks: Stimulus presentation and learning. Neural Networks, 11, 521-533.
    • (1998) Neural Networks , vol.11 , pp. 521-533
    • Dauce, E.1    Quoy, M.2    Cessac, B.3    Doyon, B.4    Samuelides, M.5
  • 14
    • 33745206512 scopus 로고    scopus 로고
    • Rocking stamper and jumping snakes from a dynamical systems approach to artificial life
    • Der, R., Hesse, F., & Martius, G. (2006). Rocking stamper and jumping snakes from a dynamical systems approach to artificial life. Adaptive Behavior, 14, 105-115.
    • (2006) Adaptive Behavior , vol.14 , pp. 105-115
    • Der, R.1    Hesse, F.2    Martius, G.3
  • 15
    • 33947432775 scopus 로고    scopus 로고
    • Nonlinear finite-time Lyapunov exponent and predictability
    • Ding, R., & Li, J. (2007).Nonlinear finite-time Lyapunov exponent and predictability. Physics Letters A, 364, 396-400.
    • (2007) Physics Letters A , vol.364 , pp. 396-400
    • Ding, R.1    Li, J.2
  • 16
    • 34247575258 scopus 로고    scopus 로고
    • Neural networks with transient state dynamics
    • Gros, C. (2007). Neural networks with transient state dynamics. New Journal of Physics, 9, 109.
    • (2007) New Journal of Physics , vol.9 , pp. 109
    • Gros, C.1
  • 17
    • 67651228771 scopus 로고    scopus 로고
    • Cognitive computation with autonomously active neural networks: An emerging field
    • Gros, C. (2009). Cognitive computation with autonomously active neural networks: An emerging field. Cognitive Computation, 1, 77-90.
    • (2009) Cognitive Computation , vol.1 , pp. 77-90
    • Gros, C.1
  • 20
    • 33646856921 scopus 로고    scopus 로고
    • Optimal dynamical range of excitable networks at criticality
    • Kinouchi, O., & Copelli, M. (2006). Optimal dynamical range of excitable networks at criticality. Nature Physics, 2, 348-351.
    • (2006) Nature Physics , vol.2 , pp. 348-351
    • Kinouchi, O.1    Copelli, M.2
  • 21
    • 33846543881 scopus 로고    scopus 로고
    • Edge of chaos and prediction of computational performance for neural circuit models
    • Legenstein, R., & Maass, W. (2006). Edge of chaos and prediction of computational performance for neural circuit models. Neural Networks, 20, 323-334.
    • (2006) Neural Networks , vol.20 , pp. 323-334
    • Legenstein, R.1    Maass, W.2
  • 22
    • 36749042711 scopus 로고    scopus 로고
    • Dynamical synapses causing selforganized criticality in neural networks
    • Levina, A., Herrmann, J. M., & Geisel, T. (2007). Dynamical synapses causing selforganized criticality in neural networks. Nature Physics, 3, 857-860.
    • (2007) Nature Physics , vol.3 , pp. 857-860
    • Levina, A.1    Herrmann, J.M.2    Geisel, T.3
  • 23
    • 63749125159 scopus 로고    scopus 로고
    • Phase transitions towards criticality in a neural system with adaptive interactions
    • Levina, A., Herrmann, J. M., & Geisel, T. (2009). Phase transitions towards criticality in a neural system with adaptive interactions. Physical Review Letters, 102, 1-4.
    • (2009) Physical Review Letters , vol.102 , pp. 1-4
    • Levina, A.1    Herrmann, J.M.2    Geisel, T.3
  • 24
    • 77955567458 scopus 로고    scopus 로고
    • Self-organized chaos through polyhomeostatic optimization
    • Marković, D., & Gros, C. (2010). Self-organized chaos through polyhomeostatic optimization. Physical Review Letters, 105, 068702.
    • (2010) Physical Review Letters , vol.105 , pp. 068702
    • Marković, D.1    Gros, C.2
  • 25
    • 73449130493 scopus 로고    scopus 로고
    • More than synaptic plasticity: Role of nonsynaptic plasticity in learning and memory
    • Mozzachiodi, R., & Byrne, J. H. (2010). More than synaptic plasticity: Role of nonsynaptic plasticity in learning and memory. Trends in Neurosciences, 33, 17-26.
    • (2010) Trends in Neurosciences , vol.33 , pp. 17-26
    • Mozzachiodi, R.1    Byrne, J.H.2
  • 26
    • 57349192097 scopus 로고    scopus 로고
    • A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discretetime random recurrent neural networks
    • Siri, B., Berry, H., Cessac, B., Delord, B., & Quoy, M. (2008). A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discretetime random recurrent neural networks. Neural Computation, 20, 2937-2966.
    • (2008) Neural Computation , vol.20 , pp. 2937-2966
    • Siri, B.1    Berry, H.2    Cessac, B.3    Delord, B.4    Quoy, M.5
  • 27
    • 36649020961 scopus 로고    scopus 로고
    • Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons
    • Siri, B., Quoy, M., Delord, B., Cessac, B., & Berry, H. (2007). Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons. Journal of Physiology, Paris, 101, 136-148.
    • (2007) Journal of Physiology, Paris , vol.101 , pp. 136-148
    • Siri, B.1    Quoy, M.2    Delord, B.3    Cessac, B.4    Berry, H.5
  • 28
    • 0000586744 scopus 로고
    • Information at the edge of chaos in fluid neural networks
    • Solé, R. V., & Miramontes, O. (1995). Information at the edge of chaos in fluid neural networks. Physica D: Nonlinear Phenomena, 80, 171-180.
    • (1995) Physica D: Nonlinear Phenomena , vol.80 , pp. 171-180
    • Solé, R.V.1    Miramontes, O.2
  • 31
    • 0033363928 scopus 로고    scopus 로고
    • How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate
    • Stemmler, M., & Koch, C. (1999). How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Nature Neuroscience, 2, 521-527.
    • (1999) Nature Neuroscience , vol.2 , pp. 521-527
    • Stemmler, M.1    Koch, C.2
  • 33
    • 34247243264 scopus 로고    scopus 로고
    • Synergies between intrinsic and synaptic plasticity mechanisms
    • Triesch, J. (2007). Synergies between intrinsic and synaptic plasticity mechanisms. Neural Computation, 909, 885-909.
    • (2007) Neural Computation , vol.909 , pp. 885-909
    • Triesch, J.1
  • 34
    • 0001884203 scopus 로고    scopus 로고
    • Life after chaos
    • Zimmer, C. (1999). Life after chaos. Science, 284, 83-86.
    • (1999) Science , vol.284 , pp. 83-86
    • Zimmer, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.