메뉴 건너뛰기




Volumn 59, Issue 3, 2010, Pages 1171-1183

Analytic study on linear systems of fractional differential equations

Author keywords

Existence; Linear fractional differential system; Mittag Leffler function; Stability; Uniqueness

Indexed keywords

ANALYTICAL APPROACH; CONSTANT COEFFICIENTS; EXACT SOLUTION; EXISTENCE AND UNIQUENESS RESULTS; FRACTIONAL DIFFERENTIAL; FRACTIONAL DIFFERENTIAL EQUATIONS; FRACTIONAL ORDER; LINEAR FRACTIONAL DIFFERENTIAL SYSTEM; MITTAG-LEFFLER FUNCTIONS; RATIONAL NUMBERS; REAL NUMBER; SYSTEMS OF DIFFERENTIAL EQUATIONS;

EID: 74149090385     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2009.06.035     Document Type: Article
Times cited : (142)

References (46)
  • 1
    • 0022660581 scopus 로고
    • On the fractional calculus models of viscoelastic behaviour
    • Bagley R.L., and Torvik P.L. On the fractional calculus models of viscoelastic behaviour. J. Rheol. 30 (1986) 133-155
    • (1986) J. Rheol. , vol.30 , pp. 133-155
    • Bagley, R.L.1    Torvik, P.L.2
  • 5
    • 0001869174 scopus 로고
    • On the initial value problem for the fractional diffusion-wave equation
    • Rionero S., and Ruggeri T. (Eds), World Scientific Publishing Company, Singapore
    • Mainardi F. On the initial value problem for the fractional diffusion-wave equation. In: Rionero S., and Ruggeri T. (Eds). Waves and Stability in Continuous Media (Bologna 1993) (1994), World Scientific Publishing Company, Singapore 246-251
    • (1994) Waves and Stability in Continuous Media (Bologna 1993) , pp. 246-251
    • Mainardi, F.1
  • 6
    • 0001044887 scopus 로고
    • Relaxation in filled polymers: A fractional calculus approach
    • Metzler F., Schick W., Kilian H.G., and Nonnenmacher T.F. Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys. 103 (1995) 7180-7186
    • (1995) J. Chem. Phys. , vol.103 , pp. 7180-7186
    • Metzler, F.1    Schick, W.2    Kilian, H.G.3    Nonnenmacher, T.F.4
  • 7
    • 0030867045 scopus 로고    scopus 로고
    • Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids
    • Rossikhin Y., and Shitikova M. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50 (1997) 15-67
    • (1997) Appl. Mech. Rev. , vol.50 , pp. 15-67
    • Rossikhin, Y.1    Shitikova, M.2
  • 8
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: Some basic problems in continuum and statistical mechanics
    • Carpinteri A., and Mainardi F. (Eds), Springer-Verlag, Wien
    • Mainardi F. Fractional calculus: Some basic problems in continuum and statistical mechanics. In: Carpinteri A., and Mainardi F. (Eds). Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer-Verlag, Wien 291-348
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics , pp. 291-348
    • Mainardi, F.1
  • 10
    • 0002641421 scopus 로고    scopus 로고
    • The random walks guide to anomalous diffusion: A fractional dynamic approach
    • Metzler R., and Klafter J. The random walks guide to anomalous diffusion: A fractional dynamic approach. Phys. Rep. 339 1 (2000) 1-77
    • (2000) Phys. Rep. , vol.339 , Issue.1 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 11
    • 0003427295 scopus 로고    scopus 로고
    • Hilfer R. (Ed), World Scientific Publishing Company, Singapore, London
    • In: Hilfer R. (Ed). Applications of Fractional Calculus in Physics (2000), World Scientific Publishing Company, Singapore, London
    • (2000) Applications of Fractional Calculus in Physics
  • 12
    • 0242458154 scopus 로고    scopus 로고
    • A chaos neuron model with fractional differential equation
    • Matsuzaki T., and Nakagawa M. A chaos neuron model with fractional differential equation. J. Phys. Soc. Japan. 72 (2003) 2678-2684
    • (2003) J. Phys. Soc. Japan. , vol.72 , pp. 2678-2684
    • Matsuzaki, T.1    Nakagawa, M.2
  • 13
    • 3042776917 scopus 로고    scopus 로고
    • Fractional calculus in bioengineering
    • Magin R.L. Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32 (2004) 1-104
    • (2004) Crit. Rev. Biomed. Eng. , vol.32 , pp. 1-104
    • Magin, R.L.1
  • 16
    • 34247323827 scopus 로고    scopus 로고
    • Fractional differential equations as alternative models to nonlinear differential equations
    • Bonilla B., Rivero M., Rodríguez-Germá L., and Trujillo J.J. Fractional differential equations as alternative models to nonlinear differential equations. Appl. Math. Comput. 187 1 (2007) 79-88
    • (2007) Appl. Math. Comput. , vol.187 , Issue.1 , pp. 79-88
    • Bonilla, B.1    Rivero, M.2    Rodríguez-Germá, L.3    Trujillo, J.J.4
  • 18
    • 0001553919 scopus 로고
    • Fractional diffusion and wave equations
    • Schneider W., and Wyss W. Fractional diffusion and wave equations. J. Math. Phys. 30 (1989) 134-144
    • (1989) J. Math. Phys. , vol.30 , pp. 134-144
    • Schneider, W.1    Wyss, W.2
  • 19
    • 0001407424 scopus 로고    scopus 로고
    • The fundamental solution of the space-time fractional diffusion equation
    • Mainardi F., Luchko Y., and Pagnini G. The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4 (2001) 153-192
    • (2001) Fract. Calc. Appl. Anal. , vol.4 , pp. 153-192
    • Mainardi, F.1    Luchko, Y.2    Pagnini, G.3
  • 20
    • 0036650479 scopus 로고    scopus 로고
    • A predictor-corrector approach for the numerical solution of fractional differential equations
    • Diethelm K., Ford N., and Freed A. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynam. 29 (2002) 3-22
    • (2002) Nonlinear Dynam. , vol.29 , pp. 3-22
    • Diethelm, K.1    Ford, N.2    Freed, A.3
  • 21
    • 4043121080 scopus 로고    scopus 로고
    • Detailed error analysis for a fractional Adams Method
    • Diethelm K., Ford N., and Freed A. Detailed error analysis for a fractional Adams Method. Numer. Algorithms 36 (2004) 31-52
    • (2004) Numer. Algorithms , vol.36 , pp. 31-52
    • Diethelm, K.1    Ford, N.2    Freed, A.3
  • 22
    • 74149085984 scopus 로고    scopus 로고
    • An algorithm for the numerical solution of differential equations of fractional order
    • Odibat Z., and Momani S. An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Inform. 26 1-2 (2008) 15-27
    • (2008) J. Appl. Math. Inform. , vol.26 , Issue.1-2 , pp. 15-27
    • Odibat, Z.1    Momani, S.2
  • 23
    • 34548384362 scopus 로고    scopus 로고
    • Numerical methods for nonlinear partial differential equations of fractional order
    • Odibat Z., and Momani S. Numerical methods for nonlinear partial differential equations of fractional order. Appl. Math. Modelling. 32 12 (2008) 28-39
    • (2008) Appl. Math. Modelling. , vol.32 , Issue.12 , pp. 28-39
    • Odibat, Z.1    Momani, S.2
  • 24
    • 35348869861 scopus 로고    scopus 로고
    • Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order
    • Odibat Z., and Momani S. Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fractals 36 1 (2008) 167-174
    • (2008) Chaos Solitons Fractals , vol.36 , Issue.1 , pp. 167-174
    • Odibat, Z.1    Momani, S.2
  • 25
    • 64549148828 scopus 로고    scopus 로고
    • Series solutions of non-linear Riccati differential equations with fractional order
    • Cang J., Tan Y., Xu H., and Liao S.J. Series solutions of non-linear Riccati differential equations with fractional order. Chaos Solitons Fractals 40 1 (2009) 1-9
    • (2009) Chaos Solitons Fractals , vol.40 , Issue.1 , pp. 1-9
    • Cang, J.1    Tan, Y.2    Xu, H.3    Liao, S.J.4
  • 26
    • 47849126401 scopus 로고    scopus 로고
    • A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor's formula
    • Momani S., and Odibat Z. A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor's formula. J. Comput. Appl. Math. 220 1-2 (2008) 85-95
    • (2008) J. Comput. Appl. Math. , vol.220 , Issue.1-2 , pp. 85-95
    • Momani, S.1    Odibat, Z.2
  • 27
    • 30344464250 scopus 로고    scopus 로고
    • Application of variational iteration method to nonlinear differential equations of fractional order
    • Odibat Z., and Momani S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 7 1 (2006) 27-34
    • (2006) Int. J. Nonlinear Sci. Numer. Simul. , vol.7 , Issue.1 , pp. 27-34
    • Odibat, Z.1    Momani, S.2
  • 28
    • 0030528474 scopus 로고    scopus 로고
    • Existence and uniqueness for a nonlinear fractional differential equation
    • Delbosco D., and Rodino L. Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl. 204 (1996) 609-625
    • (1996) J. Math. Anal. Appl. , vol.204 , pp. 609-625
    • Delbosco, D.1    Rodino, L.2
  • 29
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • Diethelm K., and Ford N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002) 229-248
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 30
    • 53949111458 scopus 로고    scopus 로고
    • Basic theory of fractional differential equations
    • Lakshmikantham V., and Vatsala A.S. Basic theory of fractional differential equations. Nonlinear Anal. TMA 69 8 (2008) 2677-2682
    • (2008) Nonlinear Anal. TMA , vol.69 , Issue.8 , pp. 2677-2682
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 31
    • 33845961350 scopus 로고    scopus 로고
    • Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives
    • Daftardar-Gejji V. Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives. J. Math. Anal. Appl. 328 2 (2007) 1026-1033
    • (2007) J. Math. Anal. Appl. , vol.328 , Issue.2 , pp. 1026-1033
    • Daftardar-Gejji, V.1
  • 32
    • 34247394106 scopus 로고    scopus 로고
    • On systems of linear fractional differential equations with constant coefficients
    • Bonilla B., Rivero M., and Trujillo J.J. On systems of linear fractional differential equations with constant coefficients. Appl. Math. Comput. 187 1 (2007) 68-78
    • (2007) Appl. Math. Comput. , vol.187 , Issue.1 , pp. 68-78
    • Bonilla, B.1    Rivero, M.2    Trujillo, J.J.3
  • 33
    • 0002731965 scopus 로고    scopus 로고
    • Stability results of fractional differential equations with applications to control processing
    • Lille, France
    • D. Matignon, Stability results of fractional differential equations with applications to control processing, in: Proceeding of IMACS, IEEE-SMC, Lille, France (1996) pp. 963-968
    • (1996) Proceeding of IMACS, IEEE-SMC , pp. 963-968
    • Matignon, D.1
  • 34
    • 33947133956 scopus 로고    scopus 로고
    • Stability analysis of linear fractional differential system with multiple time delays
    • Deng W., Li C., and Lü J. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynam. 48 (2007) 409-416
    • (2007) Nonlinear Dynam. , vol.48 , pp. 409-416
    • Deng, W.1    Li, C.2    Lü, J.3
  • 35
    • 57649105528 scopus 로고    scopus 로고
    • A note on the stability of fractional order systems
    • Tavazoei M.S., and Haeri M. A note on the stability of fractional order systems. Math. Comput. Simulation. 79 5 (2009) 1566-1576
    • (2009) Math. Comput. Simulation. , vol.79 , Issue.5 , pp. 1566-1576
    • Tavazoei, M.S.1    Haeri, M.2
  • 36
    • 74149083579 scopus 로고    scopus 로고
    • I. Petrás ̌, Stability of fractional-order systems with rational orders
    • I. Petrás ̌, Stability of fractional-order systems with rational orders
  • 37
    • 34250661428 scopus 로고    scopus 로고
    • Numerical approach to differential equations of fractional order
    • Momani S., and Odibat Z. Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207 1 (2007) 96-110
    • (2007) J. Comput. Appl. Math. , vol.207 , Issue.1 , pp. 96-110
    • Momani, S.1    Odibat, Z.2
  • 38
    • 38649111984 scopus 로고    scopus 로고
    • Further accuracy tests on Adomian decomposition method for chaotic systems
    • Abdulaziz O., Noor N., and M I. Further accuracy tests on Adomian decomposition method for chaotic systems. Chaos Solitons Fractals 36 5 (2008) 1405-1411
    • (2008) Chaos Solitons Fractals , vol.36 , Issue.5 , pp. 1405-1411
    • Abdulaziz, O.1    Noor, N.2    M, I.3
  • 39
    • 33847067879 scopus 로고    scopus 로고
    • Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle?
    • Wang Y., and Li C. Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle?. Phys. Lett. A 363 (2007) 414-419
    • (2007) Phys. Lett. A , vol.363 , pp. 414-419
    • Wang, Y.1    Li, C.2
  • 40
    • 0041384356 scopus 로고    scopus 로고
    • Chaotic dynamics of the fractional Lorenz system
    • Grigorenko I., and Grigorenko E. Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91 3 (2003) 034101
    • (2003) Phys. Rev. Lett. , vol.91 , Issue.3 , pp. 034101
    • Grigorenko, I.1    Grigorenko, E.2
  • 41
    • 18844427587 scopus 로고    scopus 로고
    • Chaos synchronization of the fractional Lü system
    • Deng W.H., and Li C.P. Chaos synchronization of the fractional Lü system. Physica A 353 (2005) 61-72
    • (2005) Physica A , vol.353 , pp. 61-72
    • Deng, W.H.1    Li, C.P.2
  • 42
    • 23144435914 scopus 로고    scopus 로고
    • A note on the fractional-order Chen system
    • Lu J.G., and Chen G. A note on the fractional-order Chen system. Chaos Solitons Fractals 27 3 (2006) 685-688
    • (2006) Chaos Solitons Fractals , vol.27 , Issue.3 , pp. 685-688
    • Lu, J.G.1    Chen, G.2
  • 43
    • 84977255207 scopus 로고
    • Linear models of dissipation whose Q is almost frequency independent, Part II
    • Caputo M. Linear models of dissipation whose Q is almost frequency independent, Part II. J. Roy. Astr. Soc. 13 (1967) 529-539
    • (1967) J. Roy. Astr. Soc. , vol.13 , pp. 529-539
    • Caputo, M.1
  • 45
    • 0002847893 scopus 로고    scopus 로고
    • Fractional calculus: Integral and differential equations of fractional order
    • Carpinteri, Mainardi Eds, New York
    • R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, in: Carpinteri, Mainardi (Eds.), Fractals and fractional calculus, New York, 1997
    • (1997) Fractals and fractional calculus
    • Gorenflo, R.1    Mainardi, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.