-
1
-
-
84890450206
-
Supervised model training for overlapping sound events based on unsupervised source separation
-
Vancouver, Canada
-
T Heittola, A. Mesaros, T Virtanen, and M. Gabbouj, "Supervised model training for overlapping sound events based on unsupervised source separation," in Int. Corif. Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, 2013, pp. 8677-8681.
-
(2013)
Int. Corif. Acoustics, Speech, and Signal Processing (ICASSP)
, pp. 8677-8681
-
-
Heittola, T.1
Mesaros, A.2
Virtanen, T.3
Gabbouj, M.4
-
2
-
-
77949294520
-
Detecting sound events in basketball video archive
-
Columbia Univ., New York
-
D. Zhang and D. Ellis, "Detecting sound events in basketball video archive," Dept. Electronic Eng., Columbia Univ., New York, 2001.
-
(2001)
Dept. Electronic Eng
-
-
Zhang, D.1
Ellis, D.2
-
3
-
-
34247578210
-
Where am I scene recognition for mobile robots using audio features
-
IEEE
-
S. Chu, S. Narayanan, C. Kuo, and M. J. Mataric, "Where am I scene recognition for mobile robots using audio features," in IEEE Int. Corif. Multimedia and Expo (ICME). IEEE, 2006, pp. 885-888.
-
(2006)
IEEE Int. Corif. Multimedia and Expo (ICME)
, pp. 885-888
-
-
Chu, S.1
Narayanan, S.2
Kuo, C.3
Mataric, M.J.4
-
4
-
-
33750550452
-
Automatic surveillance of the acoustic activity in our living environment
-
IEEE
-
A. Harma, M. E McKinney, and J. Skowronek, "Automatic surveillance of the acoustic activity in our living environment," in TEEE Tnt. Conl Multimedia and Expo (ICME). IEEE, 2005, pp. 4-pp.
-
(2005)
TEEE Tnt. Conl Multimedia and Expo (ICME)
, pp. 4
-
-
Harma, A.1
McKinney, M.E.2
Skowronek, J.3
-
5
-
-
79959754926
-
Acoustic event detection in real life recordings
-
A. Mesaros, T Heittola, A. Eronen, and T Virtanen, "Acoustic event detection in real life recordings," in Proc. European Signal Processing Conference (EUSTPCG), 2010, pp. 1267-1271.
-
(2010)
Proc. European Signal Processing Conference (EUSTPCG)
, pp. 1267-1271
-
-
Mesaros, A.1
Heittola, T.2
Eronen, A.3
Virtanen, T.4
-
6
-
-
84887056523
-
Contextdependent sound event detection
-
T Heittola, A. Mesaros, A. Eronen, and T Virtanen, "Contextdependent sound event detection," EURASIP Journal on Audio, Speech, and Music Processing, vol. 2013, no. I, pp. 1,2013.
-
(2013)
EURASIP Journal on Audio, Speech, and Music Processing
, vol.2013
, Issue.1
, pp. 1
-
-
Heittola, T.1
Mesaros, A.2
Eronen, A.3
Virtanen, T.4
-
8
-
-
84876157594
-
Overlapping sound event recognition using local spectrogram features and the generalised hough transform
-
J. Dennis, H. D. Tran, and E. S. Chng, "Overlapping sound event recognition using local spectrogram features and the generalised hough transform," Pattern Recognition Letters, vol. 34, no. 9, pp. 1085-1093, 2013.
-
(2013)
Pattern Recognition Letters
, vol.34
, Issue.9
, pp. 1085-1093
-
-
Dennis, J.1
Tran, H.D.2
Chng, E.S.3
-
9
-
-
33748366796
-
Multi label neural networks with applications to functional genomics and text categorization
-
M. Zhang and Z. Zhou, "Multi label neural networks with applications to functional genomics and text categorization," IEEE Trans. Knowledge and Data Engineering, vol. 18, no. 10, pp. 1338-1351, 2006.
-
(2006)
IEEE Trans. Knowledge and Data Engineering
, vol.18
, Issue.10
, pp. 1338-1351
-
-
Zhang, M.1
Zhou, Z.2
-
10
-
-
3042597440
-
Learning multilabel scene classification
-
M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, "Learning multilabel scene classification," Pattern recognition, vol. 37, no. 9, pp. 1757-1771, 2004.
-
(2004)
Pattern Recognition
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.R.1
Luo, J.2
Shen, X.3
Brown, C.M.4
-
11
-
-
0003223784
-
Multi-label text classification with a mixture model trained by em
-
A. McCallum, "Multi-label text classification with a mixture model trained by EM," in Workshop on Text Learning, 1999, pp. 1-7.
-
(1999)
Workshop on Text Learning
, pp. 1-7
-
-
McCallum, A.1
-
13
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, and TN. Sainath, "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," Signal Processing Magazine, IEEE, vol. 29, no. 6, pp. 82-97, 2012.
-
(2012)
Signal Processing Magazine, IEEE
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
-
14
-
-
84905270524
-
Investigation of max out networks for speech recognition
-
Pawel Swietojanski, Jinyu Li, and Jui-Ting Huang, "Investigation of max out networks for speech recognition," in Tnt. Conl Acoustics, Speech, and Signal Processing (TCASSP), 2014, pp. 7649-7653.
-
(2014)
Tnt. Conl Acoustics, Speech, and Signal Processing (TCASSP)
, pp. 7649-7653
-
-
Swietojanski, P.1
Li, J.2
Huang, J.3
-
15
-
-
84905240926
-
Deep learning for monaural speech separation
-
P.-S. Huang, M. Kim, M. Hasegawa-Johnson, and P. Smaragdis, "Deep learning for monaural speech separation," in Tnt. Conl Acoustics, Speech, and Signal Processing (TCASSP), 2014, pp. 1562-1566.
-
(2014)
Tnt. Conl Acoustics, Speech, and Signal Processing (TCASSP)
, pp. 1562-1566
-
-
Huang, P.-S.1
Kim, M.2
Hasegawa-Johnson, M.3
Smaragdis, P.4
-
16
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, "Learning deep architectures for AI," Foundations and trends in Machine Learning, vol. 2, no. I, pp. 1-127, 2009.
-
(2009)
Foundations and Trends in Machine Learning
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
17
-
-
84897543523
-
Maxout networks
-
U. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, "Maxout networks," in Proc. Int. Corif. Machine Learning (TCML), 2013, pp. 1319-1327.
-
(2013)
Proc. Int. Corif. Machine Learning (TCML)
, pp. 1319-1327
-
-
Goodfellow, U.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
18
-
-
84890527827
-
Improving deep neural networks for LVCSR using rectified linear units and dropout
-
IEEE
-
G. E. Dahl, TN. Sainath, and G. E. Hinton, "Improving deep neural networks for LVCSR using rectified linear units and dropout," in Tnt. Conl Acoustics, Speech, and Signal Processing (TCASSP). IEEE, 2013, pp. 8609-8613.
-
(2013)
Tnt. Conl Acoustics, Speech, and Signal Processing (TCASSP)
, pp. 8609-8613
-
-
Dahl, G.E.1
Sainath, T.N.2
Hinton, G.E.3
|