메뉴 건너뛰기




Volumn 18, Issue 3, 2003, Pages 185-195

Sigmoidal function classes for feedforward artificial neural networks

Author keywords

Activation function; Feedforward artificial neural networks; Sigmoidal function; Sigmoidal networks; Squashing function

Indexed keywords

ADAPTIVE ALGORITHMS; DIFFERENTIAL EQUATIONS; INTEGRAL EQUATIONS; LEARNING SYSTEMS; PROBABILITY DENSITY FUNCTION; THEOREM PROVING;

EID: 0842321952     PISSN: 13704621     EISSN: None     Source Type: Journal    
DOI: 10.1023/b:nepl.0000011137.04221.96     Document Type: Article
Times cited : (31)

References (26)
  • 1
    • 0027599793 scopus 로고
    • Universal approximation bounds for superposition of a sigmoidal function
    • Barron, A. R.: Universal approximation bounds for superposition of a sigmoidal function, IEEE Transactions on Information Theory 39 (1993), 930-945.
    • (1993) IEEE Transactions on Information Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 4
    • 0000378922 scopus 로고
    • Approximation by ridge functions and neural networks with one hidden layer
    • Chui, C. K. and Li, X.: Approximation by ridge functions and neural networks with one hidden layer, Journal of Approximation Theory 70 (1992), 131-141.
    • (1992) Journal of Approximation Theory , vol.70 , pp. 131-141
    • Chui, C.K.1    Li, X.2
  • 5
    • 0003095817 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenko, G.: Approximation by superposition of a sigmoidal function, Mathematics of Control, Signal and Systems 5(2-3) (1989), 233-243.
    • (1989) Mathematics of Control, Signal and Systems , vol.5 , Issue.2-3 , pp. 233-243
    • Cybenko, G.1
  • 6
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi, K.: On the approximate realization of continuous mappings by neural networks, Neural Networks 2 (1989), 183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 8
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M. and White, H.: Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989), 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 9
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
    • Hornik, K., Stinchcombe, M. and White, H.: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks, Neural Networks 3 (1990), 551-560.
    • (1990) Neural Networks , vol.3 , pp. 551-560
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 10
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • Pinkus, A.: Approximation theory of the MLP model in neural networks, Acta Numerica (1999), 143-195.
    • (1999) Acta Numerica , pp. 143-195
    • Pinkus, A.1
  • 11
    • 0345195977 scopus 로고    scopus 로고
    • Universal approximation using feedforward neural networks: A survey of some existing methods and some new results
    • Scarselli, F. and Tsoi, A. C.: Universal approximation using feedforward neural networks: a survey of some existing methods and some new results, Neural Networks 11 (1998), 15-37.
    • (1998) Neural Networks , vol.11 , pp. 15-37
    • Scarselli, F.1    Tsoi, A.C.2
  • 14
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
    • San Diego: SOS Printing
    • Nguyen, D. and Widrow, B.: Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights, In: Proceedings of the International Joint Conference on Neural Networks, III: 21-26, San Diego: SOS Printing (1990).
    • (1990) Proceedings of the International Joint Conference on Neural Networks , vol.3 , pp. 21-26
    • Nguyen, D.1    Widrow, B.2
  • 15
    • 0035272407 scopus 로고    scopus 로고
    • Feedforward network training speed enhancement by optimal initialisation of the synaptic coefficients
    • Yam, J. Y. F. and Chow, T. W. S.: Feedforward network training speed enhancement by optimal initialisation of the synaptic coefficients, IEEE Transactions on Neural Networks, 12 (2001), 430-434.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 430-434
    • Yam, J.Y.F.1    Chow, T.W.S.2
  • 17
    • 0000400323 scopus 로고    scopus 로고
    • Survey of neural transfer functions
    • Duch, W. and Jankowski, N.: Survey of neural transfer functions, Neural Computing Surveys 2 (1999), 163-212, http://www.icsi.berkeley.edu/~jagota/NCS.
    • (1999) Neural Computing Surveys , vol.2 , pp. 163-212
    • Duch, W.1    Jankowski, N.2
  • 18
    • 0003922549 scopus 로고
    • Back propagation is sensitive to initial conditions
    • Technical Report TR 90-JK-BPSIC, Computer and Information Science Department, The Ohio State University, Ohio
    • Kolen, J. F. and Pollock, J. B.: Back Propagation is Sensitive to Initial Conditions. Technical Report TR 90-JK-BPSIC, Computer and Information Science Department, The Ohio State University, Ohio, 1990.
    • (1990)
    • Kolen, J.F.1    Pollock, J.B.2
  • 19
    • 0038648742 scopus 로고    scopus 로고
    • A class+1 sigmoidal activation functions for FFANNs
    • Singh, Y. and Chandra, P.: A class+1 sigmoidal activation functions for FFANNs, Journal of Economic Dynamics and Control 28(1) (2003), 183-187.
    • (2003) Journal of Economic Dynamics and Control , vol.28 , Issue.1 , pp. 183-187
    • Singh, Y.1    Chandra, P.2
  • 21
    • 0004245694 scopus 로고
    • Abramowitz, M. and Stegun, I. E.: (eds.); Dover Publications, Inc., New York
    • Abramowitz, M. and Stegun, I. E.: (eds.), Handbook of Mathematical Functions, Dover Publications, Inc., New York, 1965.
    • (1965) Handbook of Mathematical Functions
  • 23
    • 0035024581 scopus 로고    scopus 로고
    • Networks with trainable amplitude of activation functions
    • Trentin, T.: Networks with trainable amplitude of activation functions, Neural Networks 14 (2001), 471-493.
    • (2001) Neural Networks , vol.14 , pp. 471-493
    • Trentin, T.1
  • 24
    • 0026900075 scopus 로고
    • Neural network controller using auto-tuning method for nonlinear functions
    • Yamada, T. and Yabuta, T.: Neural network controller using auto-tuning method for nonlinear functions, IEEE Transactions on Neural Networks 3 (1992), 595-601.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , pp. 595-601
    • Yamada, T.1    Yabuta, T.2
  • 25
    • 0030176172 scopus 로고    scopus 로고
    • A feedforward neural network with function shape autotuning
    • Chen, C. T. and Chang, W. D.: A feedforward neural network with function shape autotuning, Neural Networks 9(4) (1996), 627-641.
    • (1996) Neural Networks , vol.9 , Issue.4 , pp. 627-641
    • Chen, C.T.1    Chang, W.D.2
  • 26
    • 0000553033 scopus 로고
    • The study of neural adaptive control systems
    • Hu, Z. and Shao, H.: The study of neural adaptive control systems, Control and Decision 7 (1992), 361-366.
    • (1992) Control and Decision , vol.7 , pp. 361-366
    • Hu, Z.1    Shao, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.