-
1
-
-
35348902771
-
Fast nearest neighbor condensation for large data sets classification
-
DOI 10.1109/TKDE.2007.190645
-
F. Angiulli, "Fast nearest neighbor condensation for large data sets classification," IEEE Trans. Knowl. Data Eng., vol.19, no.11, pp. 1450-1464, Nov. 2007. (Pubitemid 47573790)
-
(2007)
IEEE Transactions on Knowledge and Data Engineering
, vol.19
, Issue.11
, pp. 1450-1464
-
-
Angiulli, F.1
-
2
-
-
21844437496
-
Breaking SVM complexity with cross-training
-
Cambridge, MA: MIT Press
-
G. H. Bakur, L. Bottou, and J. Weston, "Breaking SVM complexity with cross-training," in Advances in Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press, 2004.
-
(2004)
Advances in Neural Information Processing Systems (NIPS)
-
-
Bakur, G.H.1
Bottou, L.2
Weston, J.3
-
3
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
B. Boser, I. Guyon, and V. Vapnik, "A training algorithm for optimal margin classifiers," in Proc. 5th Annu. Workshop Comput. Learn. Theory, 1992, pp. 144-152.
-
(1992)
Proc. 5th Annu. Workshop Comput. Learn. Theory
, pp. 144-152
-
-
Boser, B.1
Guyon, I.2
Vapnik, V.3
-
6
-
-
0015346497
-
The reduced nearest neighbor rule
-
May
-
W. Gates, "The reduced nearest neighbor rule," IEEE Trans. Inf. Theory, vol.IT-18, no.3, pp. 431-433, May 1972.
-
(1972)
IEEE Trans. Inf. Theory
, vol.IT-18
, Issue.3
, pp. 431-433
-
-
Gates, W.1
-
7
-
-
84931162639
-
The condensed nearest neighbor rule
-
May
-
P. E. Hart, "The condensed nearest neighbor rule," IEEE Trans. Inf. Theory, vol.IT-14, no.3, pp. 515-516, May 1968.
-
(1968)
IEEE Trans. Inf. Theory
, vol.IT-14
, Issue.3
, pp. 515-516
-
-
Hart, P.E.1
-
9
-
-
0037277806
-
Fast minimization of structural risk by nearest neighbor rule
-
Jan.
-
B. Karaçali and H. Krim, "Fast minimization of structural risk by nearest neighbor rule," IEEE Trans. Neural Netw., vol.14, no.1, pp. 127-134, Jan. 2002.
-
(2002)
IEEE Trans. Neural Netw.
, vol.14
, Issue.1
, pp. 127-134
-
-
Karaçali, B.1
Krim, H.2
-
13
-
-
0031334889
-
An improved training algorithm for support vector machines
-
E. Osuna, R. Freund, and F. Girosi, "An improved training algorithm for support vector machines," in Proc. IEEE Workshop Neural Netw. Signal Process., 1997, pp. 276-285.
-
(1997)
Proc. IEEE Workshop Neural Netw. Signal Process.
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
14
-
-
0003120218
-
Sequential minimal optimization:A fast algorithm for training support vector machines
-
C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press
-
J. Platt, "Sequential minimal optimization:A fast algorithm for training support vector machines," in Advances in Kernel Methods-Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1999.
-
(1999)
Advances in Kernel Methods-Support Vector Learning, B. Schölkopf
-
-
Platt, J.1
-
15
-
-
0003798627
-
Advances in kernel methods: Support vector learning
-
C. J. C. Burges and A. J. Smola, Eds. Cambridge, MA: MIT Press
-
B. Schölkopf, "Advances in kernel methods: Support vector learning," in Advances in Neural Information Processing System, C. J. C. Burges and A. J. Smola, Eds. Cambridge, MA: MIT Press, 1999.
-
(1999)
Advances in Neural Information Processing System
-
-
Schölkopf, B.1
-
17
-
-
25444436302
-
Proximity graphs for nearest neighbor decision rules: Recent progress
-
Montreal, QC, Canada
-
G. Toussaint, "Proximity graphs for nearest neighbor decision rules: Recent progress," in Proc. Symp. Comput. Statist., Montreal, QC, Canada, 2002, pp. 17-20.
-
(2002)
Proc. Symp. Comput. Statist.
, pp. 17-20
-
-
Toussaint, G.1
-
19
-
-
0343081513
-
Reduction techniques for instancebased learning algorithms
-
D. R. Wilson and T. R. Martinez, "Reduction techniques for instancebased learning algorithms," Mach. Learn., vol.38, no.3, pp. 257-286, 2000.
-
(2000)
Mach. Learn.
, vol.38
, Issue.3
, pp. 257-286
-
-
Wilson, D.R.1
Martinez, T.R.2
-
20
-
-
77952390455
-
Classifying large data sets using SVMs with hierarchical clusters
-
H. Yu, J. Yang, and J. Han, "Classifying large data sets using SVMs with hierarchical clusters," in Proc. Int. Conf. Knowl. Disc. Data Mining, 2003, pp. 306-315.
-
(2003)
Proc. Int. Conf. Knowl. Disc. Data Mining
, pp. 306-315
-
-
Yu, H.1
Yang, J.2
Han, J.3
|