메뉴 건너뛰기




Volumn 41, Issue , 2016, Pages 230-233

140 characters to victory?: Using Twitter to predict the UK 2015 General Election

Author keywords

Election; Forecasting; Sentiment analysis; Twitter

Indexed keywords

ELECTION; FORECASTING METHOD; INTERNET; SOCIAL MEDIA;

EID: 84949920963     PISSN: 02613794     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.electstud.2015.11.017     Document Type: Article
Times cited : (167)

References (23)
  • 5
    • 84894238224 scopus 로고    scopus 로고
    • Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens' political preferences with an application to Italy and France
    • Ceron A., Curini L., Iacus S.M., Porro G. Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens' political preferences with an application to Italy and France. New Media Soc. 2014, 16(2):340-358.
    • (2014) New Media Soc. , vol.16 , Issue.2 , pp. 340-358
    • Ceron, A.1    Curini, L.2    Iacus, S.M.3    Porro, G.4
  • 6
    • 84896703695 scopus 로고    scopus 로고
    • More tweets, more votes: social media as a quantitative indicator of political behavior
    • DiGrazia J., McKelvey K., Bollen J., Rojas F. More tweets, more votes: social media as a quantitative indicator of political behavior. PloS one 2013, 8(11):e79449.
    • (2013) PloS one , vol.8 , Issue.11 , pp. e79449
    • DiGrazia, J.1    McKelvey, K.2    Bollen, J.3    Rojas, F.4
  • 7
    • 84874523439 scopus 로고    scopus 로고
    • (Wisdom of the Crowds) 2: 2010 UK election prediction with social media
    • Franch F. (Wisdom of the Crowds) 2: 2010 UK election prediction with social media. J. Inf. Technol. Polit. 2013, 10(1):57-71.
    • (2013) J. Inf. Technol. Polit. , vol.10 , Issue.1 , pp. 57-71
    • Franch, F.1
  • 11
    • 84860196341 scopus 로고    scopus 로고
    • Why the pirate party won the German election of 2009 or the trouble with predictions: a response to tumasjan, a., sprenger, to, sander, pg, & welpe, im "predicting elections with twitter: what 140 characters reveal about political sentiment"
    • Jungherr A., Jürgens P., Schoen H. Why the pirate party won the German election of 2009 or the trouble with predictions: a response to tumasjan, a., sprenger, to, sander, pg, & welpe, im "predicting elections with twitter: what 140 characters reveal about political sentiment". Soc. Sci. Comput. Rev. 2012, 30(2):229-234.
    • (2012) Soc. Sci. Comput. Rev. , vol.30 , Issue.2 , pp. 229-234
    • Jungherr, A.1    Jürgens, P.2    Schoen, H.3
  • 12
    • 84890801998 scopus 로고    scopus 로고
    • Internet search data and issue salience: the properties of Google trends as a measure of issue salience
    • Mellon J. Internet search data and issue salience: the properties of Google trends as a measure of issue salience. J. Elections, Public Opin. Parties 2014, 24(1):45-72.
    • (2014) J. Elections, Public Opin. Parties , vol.24 , Issue.1 , pp. 45-72
    • Mellon, J.1
  • 14
    • 84857833219 scopus 로고    scopus 로고
    • Proxy models for election forecasting: the 2012 French test
    • Nedeau R., Lewis-Beck M.S., Bélanger E. Proxy models for election forecasting: the 2012 French test. Fr. Polit. 2012, 10(1):1-10.
    • (2012) Fr. Polit. , vol.10 , Issue.1 , pp. 1-10
    • Nedeau, R.1    Lewis-Beck, M.S.2    Bélanger, E.3
  • 15
    • 84890614558 scopus 로고    scopus 로고
    • From tweets to polls: linking text sentiment to public opinion time series
    • O'Connor B., Balasubramanyan R., Routledge B.R., Smith N.A. From tweets to polls: linking text sentiment to public opinion time series. ICWSM 2010, 11:122-129.
    • (2010) ICWSM , vol.11 , pp. 122-129
    • O'Connor, B.1    Balasubramanyan, R.2    Routledge, B.R.3    Smith, N.A.4
  • 16
    • 79955690250 scopus 로고    scopus 로고
    • Monitoring influenza activity in the United States: a comparison of traditional surveillance systems with Googl Flu trends
    • Ortiz J.R., Zhou H., Shay D.K., Neuzil K.M., Fowlkes A.L. Monitoring influenza activity in the United States: a comparison of traditional surveillance systems with Googl Flu trends. PLoS One 2011, 6:4.
    • (2011) PLoS One , vol.6 , pp. 4
    • Ortiz, J.R.1    Zhou, H.2    Shay, D.K.3    Neuzil, K.M.4    Fowlkes, A.L.5
  • 20
    • 84884229586 scopus 로고    scopus 로고
    • Knowing the tweeters: deriving sociologically relevant demographics from twitter'
    • Sloan L., Morgan J., Housley W., Williams, Edwards M., Burnap A., Omer R. Knowing the tweeters: deriving sociologically relevant demographics from twitter'. Sociol. Res. Online 2013, 18(3):7. http://www.socresonline.org.uk/18/3/7.html.
    • (2013) Sociol. Res. Online , vol.18 , Issue.3 , pp. 7
    • Sloan, L.1    Morgan, J.2    Housley, W.3    Williams, E.M.4    Burnap, A.5    Omer, R.6
  • 21
    • 84923888276 scopus 로고    scopus 로고
    • Who tweets? deriving the demographic characteristics of age, occupation and social class from twitter user meta-data
    • Sloan L., Morgan J., Burnap P., Williams M. Who tweets? deriving the demographic characteristics of age, occupation and social class from twitter user meta-data. PLoS One 2015, 10(3):e0115545. 10.1371/journal.pone.0115545.
    • (2015) PLoS One , vol.10 , Issue.3 , pp. e0115545
    • Sloan, L.1    Morgan, J.2    Burnap, P.3    Williams, M.4
  • 23
    • 84890668120 scopus 로고    scopus 로고
    • Predicting elections with Twitter: what 140 characters reveal about political sentiment
    • Tumasjan A., Sprenger T.O., Sandner P.G., Welpe I.M. Predicting elections with Twitter: what 140 characters reveal about political sentiment. ICWSM 2010, 10:178-185.
    • (2010) ICWSM , vol.10 , pp. 178-185
    • Tumasjan, A.1    Sprenger, T.O.2    Sandner, P.G.3    Welpe, I.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.