메뉴 건너뛰기




Volumn 8, Issue 10, 2015, Pages 4742-4750

Learning-Based Emulation of Sea Surface Wind Fields from Numerical Model Outputs and SAR Data

Author keywords

Coastal wind; downscaling; high resolution (HR); machine learning; support vector regression (SVR)

Indexed keywords

FORECASTING; IMAGE RESOLUTION; LEARNING SYSTEMS; MACHINE LEARNING; MEAN SQUARE ERROR; ORTHOGONAL FUNCTIONS; SURFACE WATERS; SYNTHETIC APERTURE RADAR;

EID: 84949844115     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2015.2496503     Document Type: Article
Times cited : (7)

References (36)
  • 2
    • 0033172665 scopus 로고    scopus 로고
    • The analog method as a simple statistical downscaling technique: Comparison with more complicated methods
    • E. Zorita and H. Von Storch, "The analog method as a simple statistical downscaling technique: Comparison with more complicated methods, " J. Clim., vol. 12, no. 8, pp. 2474-2489, 1999.
    • (1999) J. Clim. , vol.12 , Issue.8 , pp. 2474-2489
    • Zorita, E.1    Von Storch, H.2
  • 3
    • 33144463991 scopus 로고    scopus 로고
    • The SAR measurement of ocean surface winds: An overview
    • F. Monaldo et al., "The SAR measurement of ocean surface winds: An overview, " in Proc. 2nd Workshop Coastal Marine Appl. SAR, 2003, pp. 2-12.
    • (2003) Proc. 2nd Workshop Coastal Marine Appl. SAR , pp. 2-12
    • Monaldo, F.1
  • 4
    • 80051880630 scopus 로고    scopus 로고
    • Improved Bayesian wind vector retrieval scheme using ENVISAT ASAR data: Principles and validation results
    • V. Kerbaol, "Improved Bayesian wind vector retrieval scheme using ENVISAT ASAR data: Principles and validation results, " in Proc. ENVISAT Symp., 2007, pp. 23-27.
    • (2007) Proc. ENVISAT Symp. , pp. 23-27
    • Kerbaol, V.1
  • 6
    • 35348998346 scopus 로고    scopus 로고
    • Cambridge, U. K. : Cambridge Univ. Press, ch. 11
    • J. H. Christensen et al., Regional Climate Projections. Cambridge, U. K. : Cambridge Univ. Press, 2007, ch. 11, pp. 847-940.
    • (2007) Regional Climate Projections , pp. 847-940
    • Christensen, J.H.1
  • 8
    • 0033048866 scopus 로고    scopus 로고
    • Verification of GCMgenerated regional seasonal precipitation for current climate and of statistical downscaling estimates under changing climate conditions
    • A. Busuioc, H. Von Storch, and R. Schnur, "Verification of GCMgenerated regional seasonal precipitation for current climate and of statistical downscaling estimates under changing climate conditions, " J. Clim., vol. 12, no. 1, pp. 258-272, 1999.
    • (1999) J. Clim. , vol.12 , Issue.1 , pp. 258-272
    • Busuioc, A.1    Von Storch, H.2    Schnur, R.3
  • 9
    • 0034035880 scopus 로고    scopus 로고
    • Skill comparisons between neural networks and canonical correlation analysis in predicting the equatorial pacific sea surface temperatures
    • B. Tang, W. W. Hsieh, A. H. Monahan, and F. T. Tangang, "Skill comparisons between neural networks and canonical correlation analysis in predicting the equatorial pacific sea surface temperatures, " J. Clim., vol. 13, no. 1, pp. 287-293, 2000.
    • (2000) J. Clim. , vol.13 , Issue.1 , pp. 287-293
    • Tang, B.1    Hsieh, W.W.2    Monahan, A.H.3    Tangang, F.T.4
  • 10
    • 33645959158 scopus 로고    scopus 로고
    • Neural network forecasts of the tropical pacific sea surface temperatures
    • A. Wu, W. W. Hsieh, and B. Tang, "Neural network forecasts of the tropical pacific sea surface temperatures, " Neural Netw., vol. 19, no. 2, pp. 145-154, 2006.
    • (2006) Neural Netw. , vol.19 , Issue.2 , pp. 145-154
    • Wu, A.1    Hsieh, W.W.2    Tang, B.3
  • 11
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • V. Vapnik, S. E. Golowich, and A. Smola, "Support vector method for function approximation, regression estimation, and signal processing, " Adv. Neural Inf. Process. Syst., vol. 9, pp. 281-287, 1997.
    • (1997) Adv. Neural Inf. Process. Syst. , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.E.2    Smola, A.3
  • 12
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests, " Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 15
    • 0031870946 scopus 로고    scopus 로고
    • A comparison of statistical and model-based downscaling techniques for estimating local climate variations
    • J. W. Kidson and C. S. Thompson, "A comparison of statistical and model-based downscaling techniques for estimating local climate variations, " J. Clim., vol. 11, no. 4, pp. 735-753, 1998.
    • (1998) J. Clim. , vol.11 , Issue.4 , pp. 735-753
    • Kidson, J.W.1    Thompson, C.S.2
  • 16
    • 84883819847 scopus 로고    scopus 로고
    • Forecasts of tropical pacific sea surface temperatures by neural networks and support vector regression
    • S. Aguilar-Martinez and W. W. Hsieh, "Forecasts of tropical pacific sea surface temperatures by neural networks and support vector regression, " Int. J. Oceanogr., vol. 2009, 2009, doi: 10. 1155/2009/167239.
    • (2009) Int. J. Oceanogr. , vol.2009
    • Aguilar-Martinez, S.1    Hsieh, W.W.2
  • 17
    • 79953720624 scopus 로고    scopus 로고
    • Statistical downscaling of sea-surface wind over the Peru-Chile upwelling region: Diagnosing the impact of climate change from the IPSL-CM4 model
    • K. Goubanova et al., "Statistical downscaling of sea-surface wind over the Peru-Chile upwelling region: Diagnosing the impact of climate change from the IPSL-CM4 model, " Clim. Dyn., vol. 36, no. 7-8, pp. 1365-1378, 2011.
    • (2011) Clim. Dyn. , vol.36 , Issue.7-8 , pp. 1365-1378
    • Goubanova, K.1
  • 18
    • 0030743594 scopus 로고    scopus 로고
    • Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4
    • A. Stoffelen and D. Anderson, "Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4, " J. Geophys. Res., vol. 102, no. C3, pp. 5767-5780, 1997.
    • (1997) J. Geophys. Res. , vol.102 , Issue.C3 , pp. 5767-5780
    • Stoffelen, A.1    Anderson, D.2
  • 19
    • 77953491253 scopus 로고    scopus 로고
    • Comparison of C-band scatterometer CMOD5. N equivalent neural winds with ECMWF
    • H. Hersbach, "Comparison of C-band scatterometer CMOD5. N equivalent neural winds with ECMWF, " J. Atmos. Ocean. Technol., vol. 27, pp. 721-736, 2010.
    • (2010) J. Atmos. Ocean. Technol. , vol.27 , pp. 721-736
    • Hersbach, H.1
  • 20
    • 84860697372 scopus 로고    scopus 로고
    • Cross-polarized synthetic aperture radar: A new potential measurement technique for hurricanes
    • B. Zhang andW. Perrie, "Cross-polarized synthetic aperture radar: A new potential measurement technique for hurricanes, " Bull. Amer. Meteorol. Soc., vol. 93, no. 4, pp. 531-541, 2012.
    • (2012) Bull. Amer. Meteorol. Soc. , vol.93 , Issue.4 , pp. 531-541
    • Zhang, B.1    Perrie, W.2
  • 21
    • 0035696814 scopus 로고    scopus 로고
    • Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements
    • Dec.
    • F. M. Monaldo, D. R. Thompson, R. C. Beal, W. G. Pichel, and P. Clemente-Colón, "Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements, " IEEE Trans. Geosci. Remote Sens., vol. 39, no. 12, pp. 2587-2600, Dec. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.12 , pp. 2587-2600
    • Monaldo, F.M.1    Thompson, D.R.2    Beal, R.C.3    Pichel, W.G.4    Clemente-Colón, P.5
  • 22
    • 0033901130 scopus 로고    scopus 로고
    • Comparison of derived wind speed from synthetic aperture radar and scatterometer during the ERS tandem phase
    • Mar.
    • B. R. Furevik and E. Korsbakken, "Comparison of derived wind speed from synthetic aperture radar and scatterometer during the ERS tandem phase, " IEEE Trans. Geosci. Remote Sens., vol. 38, no. 2, pp. 1113-1121, Mar. 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.2 , pp. 1113-1121
    • Furevik, B.R.1    Korsbakken, E.2
  • 23
    • 0001640663 scopus 로고
    • A rational subdivision of scales for atmospheric processes
    • May
    • I. Orlanski, "A rational subdivision of scales for atmospheric processes, " Bull. Am. Meteorol. Soc., vol. 56, no. 5, pp. 527-530, May 1975.
    • (1975) Bull. Am. Meteorol. Soc. , vol.56 , Issue.5 , pp. 527-530
    • Orlanski, I.1
  • 24
    • 5844347849 scopus 로고
    • Paris, France: Éditions maritimes et d'outre-mer
    • R. Mayençon, Météorologie Marine. Paris, France: Éditions maritimes et d'outre-mer, 1982.
    • (1982) Météorologie Marine
    • Mayençon, R.1
  • 25
    • 37249000770 scopus 로고    scopus 로고
    • Wind assessment in a coastal environment using synthetic aperture radar satellite imagery and a numerical weather prediction model
    • P. Beaucage et al., "Wind assessment in a coastal environment using synthetic aperture radar satellite imagery and a numerical weather prediction model, " Can. J. Remote Sens., vol. 33, no. 5, pp. 368-377, 2007.
    • (2007) Can. J. Remote Sens. , vol.33 , Issue.5 , pp. 368-377
    • Beaucage, P.1
  • 26
    • 33744773858 scopus 로고    scopus 로고
    • Relationship between SAR-derived wind vectors and wind at 10-m height represented by a mesoscale model
    • W. Koch and F. Feser, "Relationship between SAR-derived wind vectors and wind at 10-m height represented by a mesoscale model, " Mon. Weather Rev., vol. 134, no. 5, pp. 1505-1517, 2006.
    • (2006) Mon. Weather Rev. , vol.134 , Issue.5 , pp. 1505-1517
    • Koch, W.1    Feser, F.2
  • 28
    • 0035578287 scopus 로고    scopus 로고
    • The statistical prediction of offshore winds from land-based data for wind-energy applications
    • J. Walmsley, R. Barthelmie, and W. Burrows, "The statistical prediction of offshore winds from land-based data for wind-energy applications, " Boundary Layer Meteorol., vol. 101, pp. 409-433, 2001.
    • (2001) Boundary Layer Meteorol. , vol.101 , pp. 409-433
    • Walmsley, J.1    Barthelmie, R.2    Burrows, W.3
  • 29
    • 79551589684 scopus 로고    scopus 로고
    • A statistical-dynamical scheme for reconstructing ocean forcing in the atlantic-Part II: Methodology, validation and application to highresolution ocean models
    • M. Minvielle, C. Cassou, R. Bourdallé-Badie, L. Terray, and J. Najac, "A statistical-dynamical scheme for reconstructing ocean forcing in the atlantic-Part II: Methodology, validation and application to highresolution ocean models, " Clim. Dyn., vol. 36, no. 3, pp. 401-417, 2011.
    • (2011) Clim. Dyn. , vol.36 , Issue.3 , pp. 401-417
    • Minvielle, M.1    Cassou, C.2    Bourdallé-Badie, R.3    Terray, L.4    Najac, J.5
  • 30
    • 0014534148 scopus 로고
    • Atmospheric predictability as revealed by naturally occurring analogues
    • E. N. Lorenz, "Atmospheric predictability as revealed by naturally occurring analogues, " J. Atmos. Sci., vol. 26, no. 4, pp. 636-646, 1969.
    • (1969) J. Atmos. Sci. , vol.26 , Issue.4 , pp. 636-646
    • Lorenz, E.N.1
  • 31
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A. J. Smola and B. Schölkopf, "A tutorial on support vector regression, " Statist. Comput., vol. 14, no. 3, pp. 199-222, 2004.
    • (2004) Statist. Comput. , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 33
    • 84968159225 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. Vapnik and A. Chervonenkis, "On the uniform convergence of relative frequencies of events to their probabilities, " Theory Probab. Appl., vol. 16, no. 2, pp. 264-280, 1971.
    • (1971) Theory Probab. Appl. , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.1    Chervonenkis, A.2
  • 35
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • V. Cherkassky and Y. Ma, "Practical selection of SVM parameters and noise estimation for SVM regression, " Neural Netw., vol. 17, no. 1, pp. 113-126, 2004.
    • (2004) Neural Netw. , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.