메뉴 건너뛰기




Volumn 3, Issue APR, 2015, Pages

A computational analysis of stoichiometric constraints and trade-offs in cyanobacterial biofuel production

Author keywords

Cyanobacteria; Flux balance analysis; Metabolic modeling; Microbial cell factories; Photosynthesis; Synechocystis sp. PCC 6803

Indexed keywords


EID: 84949803685     PISSN: None     EISSN: 22964185     Source Type: Journal    
DOI: 10.3389/fbioe.2015.00047     Document Type: Article
Times cited : (40)

References (48)
  • 1
    • 84868334617 scopus 로고    scopus 로고
    • Engineering a cyanobacterial cell factory for production of lactic acid
    • Angermayr, S. A., Paszota, M., and Hellingwerf, K. J. (2012). Engineering a cyanobacterial cell factory for production of lactic acid. Appl. Environ. Microbiol. 78, 7098-7106. doi:10.1128/AEM.01587-12.
    • (2012) Appl. Environ. Microbiol , vol.78 , pp. 7098-7106
    • Angermayr, S.A.1    Paszota, M.2    Hellingwerf, K.J.3
  • 2
    • 71849086611 scopus 로고    scopus 로고
    • Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
    • Atsumi, S., Higashide, W., and Liao, J. C. (2009). Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 27, 1177-1180. doi:10.1038/nbt.1586.
    • (2009) Nat. Biotechnol , vol.27 , pp. 1177-1180
    • Atsumi, S.1    Higashide, W.2    Liao, J.C.3
  • 3
    • 84884301231 scopus 로고    scopus 로고
    • Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes
    • Bar-Even, A., Noor, E., Flamholz, A., and Milo, R. (2013). Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. Biochim. Biophys. Acta 1827, 1039-1047. doi:10.1016/j.bbabio.2012.10.013.
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 1039-1047
    • Bar-Even, A.1    Noor, E.2    Flamholz, A.3    Milo, R.4
  • 4
    • 0242487787 scopus 로고    scopus 로고
    • Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard, A. P., Pharkya, P., and Maranas, C. D. (2003). Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647-657. doi:10.1002/bit.10803.
    • (2003) Biotechnol. Bioeng , vol.84 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 5
    • 77952265112 scopus 로고    scopus 로고
    • In silico identification of gene amplification targets for improvement of lycopene production
    • Choi, H. S., Lee, S. Y., Kim, T. Y., and Woo, H. M. (2010). In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol. 76, 3097-3105. doi:10.1128/AEM.00115-10.
    • (2010) Appl. Environ. Microbiol , vol.76 , pp. 3097-3105
    • Choi, H.S.1    Lee, S.Y.2    Kim, T.Y.3    Woo, H.M.4
  • 6
    • 0032976323 scopus 로고    scopus 로고
    • Ethanol synthesis by genetic engineering in cyanobacteria
    • Deng, M. D., and Coleman, J. R. (1999). Ethanol synthesis by genetic engineering in cyanobacteria. Appl. Environ. Microbiol. 65, 523-528.
    • (1999) Appl. Environ. Microbiol , vol.65 , pp. 523-528
    • Deng, M.D.1    Coleman, J.R.2
  • 7
    • 84894447968 scopus 로고    scopus 로고
    • Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC 6803
    • Dienst, D., Georg, J., Abts, T., Jakorew, L., Kuchmina, E., Börner, T., et al. (2014). Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC 6803. Biotechnol. Biofuels 7, 21. doi:10.1186/1754-6834-7-21.
    • (2014) Biotechnol. Biofuels , vol.7 , pp. 21
    • Dienst, D.1    Georg, J.2    Abts, T.3    Jakorew, L.4    Kuchmina, E.5    Börner, T.6
  • 8
    • 78751638661 scopus 로고    scopus 로고
    • Engineering cyanobacteria to generate high-value products
    • Ducat, D. C., Way, J. C., and Silver, P. A. (2011). Engineering cyanobacteria to generate high-value products. Trends Biotechnol. 29, 95-103. doi:10.1016/j.tibtech.2010.12.003.
    • (2011) Trends Biotechnol , vol.29 , pp. 95-103
    • Ducat, D.C.1    Way, J.C.2    Silver, P.A.3
  • 11
    • 84988515801 scopus 로고    scopus 로고
    • Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling
    • Erdrich, P., Knoop, H., Steuer, R., and Klamt, S. (2014). Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling. Microb. Cell Fact. 13, 128. doi:10.1186/s12934-014-0128-x.
    • (2014) Microb. Cell Fact , vol.13 , pp. 128
    • Erdrich, P.1    Knoop, H.2    Steuer, R.3    Klamt, S.4
  • 12
    • 84869812481 scopus 로고    scopus 로고
    • Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803
    • Guerrero, F., Carbonell, V., Cossu, M., Correddu, D., and Jones, P. R. (2012). Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803. PLoS ONE 7:e50470. doi:10.1371/journal.pone.0050470.
    • (2012) PLoS ONE , vol.7
    • Guerrero, F.1    Carbonell, V.2    Cossu, M.3    Correddu, D.4    Jones, P.R.5
  • 14
    • 84904549650 scopus 로고    scopus 로고
    • Engineered platform for bioethylene production by a cyanobacterium expressing a chimeric complex of plant enzymes
    • Jindou, S., Ito, Y., Mito, N., Uematsu, K., Hosoda, A., and Tamura, H. (2014). Engineered platform for bioethylene production by a cyanobacterium expressing a chimeric complex of plant enzymes. ACS Synth. Biol. 3, 487-496. doi:10.1021/sb400197f.
    • (2014) ACS Synth. Biol , vol.3 , pp. 487-496
    • Jindou, S.1    Ito, Y.2    Mito, N.3    Uematsu, K.4    Hosoda, A.5    Tamura, H.6
  • 15
    • 84878692910 scopus 로고    scopus 로고
    • Utilization of lactic acid bacterial genes in Synechocystis sp. pcc 6803 in the production of lactic acid
    • Joseph, A., Aikawa, S., Sasaki, K., Tsuge, Y., Matsuda, F., Tanaka, T., et al. (2013). Utilization of lactic acid bacterial genes in Synechocystis sp. pcc 6803 in the production of lactic acid. Biosci. Biotechnol. Biochem. 77, 966-970. doi:10.1271/bbb.120921.
    • (2013) Biosci. Biotechnol. Biochem , vol.77 , pp. 966-970
    • Joseph, A.1    Aikawa, S.2    Sasaki, K.3    Tsuge, Y.4    Matsuda, F.5    Tanaka, T.6
  • 16
    • 84907300434 scopus 로고    scopus 로고
    • An engineered pathway for the biosynthesis of renewable propane
    • Kallio, P., Pásztor, A., Thiel, K., Akhtar, M. K., and Jones, P. R. (2014). An engineered pathway for the biosynthesis of renewable propane. Nat. Commun. 5, 4731. doi:10.1038/ncomms5731.
    • (2014) Nat. Commun , vol.5 , pp. 4731
    • Kallio, P.1    Pásztor, A.2    Thiel, K.3    Akhtar, M.K.4    Jones, P.R.5
  • 17
    • 84867649126 scopus 로고    scopus 로고
    • Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production
    • Kämäräinen, J., Knoop, H., Stanford, N. J., Guerrero, F., Akhtar, M. K., Aro, E.-M., et al. (2012). Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production. J. Biotechnol. 162, 67-74. doi:10.1016/j.jbiotec.2012.07.193.
    • (2012) J. Biotechnol , vol.162 , pp. 67-74
    • Kämäräinen, J.1    Knoop, H.2    Stanford, N.J.3    Guerrero, F.4    Akhtar, M.K.5    Aro, E.-M.6
  • 18
    • 84879829539 scopus 로고    scopus 로고
    • Production of propane and other short-chain alkanes by structure-based engineering of ligand specificity in aldehyde-deformylating oxygenase
    • Khara, B., Menon, N., Levy, C., Mansell, D., Das, D., Marsh, E. N. G., et al. (2013). Production of propane and other short-chain alkanes by structure-based engineering of ligand specificity in aldehyde-deformylating oxygenase. Chembiochem 14, 1204-1208. doi:10.1002/cbic.201300307.
    • (2013) Chembiochem , vol.14 , pp. 1204-1208
    • Khara, B.1    Menon, N.2    Levy, C.3    Mansell, D.4    Das, D.5    Marsh, E.N.G.6
  • 19
    • 84879517799 scopus 로고    scopus 로고
    • Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803
    • Knoop, H., Gründel, M., Zilliges, Y., Lehmann, R., Hoffmann, S., Lockau, W., et al. (2013). Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput. Biol. 9:e1003081. doi:10.1371/journal.pcbi.1003081.
    • (2013) PLoS Comput. Biol , vol.9
    • Knoop, H.1    Gründel, M.2    Zilliges, Y.3    Lehmann, R.4    Hoffmann, S.5    Lockau, W.6
  • 20
    • 77956710803 scopus 로고    scopus 로고
    • The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth
    • Knoop, H., Zilliges, Y., Lockau, W., and Steuer, R. (2010). The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol. 154, 410-422. doi:10.1104/pp.110.157198.
    • (2010) Plant Physiol , vol.154 , pp. 410-422
    • Knoop, H.1    Zilliges, Y.2    Lockau, W.3    Steuer, R.4
  • 21
    • 84882392453 scopus 로고    scopus 로고
    • Oxygen-tolerant coenzyme a-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria
    • Lan, E., Roa, S. Y., and Liao, J. C. (2013). Oxygen-tolerant coenzyme a-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ. Sci. 6, 2672-2681. doi:10.1039/c3ee41405a.
    • (2013) Energy Environ. Sci , vol.6 , pp. 2672-2681
    • Lan, E.1    Roa, S.Y.2    Liao, J.C.3
  • 22
    • 79958747820 scopus 로고    scopus 로고
    • Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide
    • Lan, E. I., and Liao, J. C. (2011). Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab. Eng. 13, 353-363. doi:10.1016/j.ymben.2011.04.004.
    • (2011) Metab. Eng , vol.13 , pp. 353-363
    • Lan, E.I.1    Liao, J.C.2
  • 23
    • 84859950774 scopus 로고    scopus 로고
    • ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
    • Lan, E. I., and Liao, J. C. (2012). ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 109, 6018-6023. doi:10.1073/pnas.1200074109.
    • (2012) Proc. Natl. Acad. Sci. U.S.A , vol.109 , pp. 6018-6023
    • Lan, E.I.1    Liao, J.C.2
  • 24
    • 84892183906 scopus 로고    scopus 로고
    • The nonenzymatic decomposition of guanidines and amidines
    • Lewis, C. A. Jr., and Wolfenden, R. (2014). The nonenzymatic decomposition of guanidines and amidines. J. Am. Chem. Soc. 139, 130-136. doi:10.1021/ja411927k.
    • (2014) J. Am. Chem. Soc , vol.139 , pp. 130-136
    • Lewis, C.A.1    Wolfenden, R.2
  • 25
    • 70449336249 scopus 로고    scopus 로고
    • Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism
    • Lindberg, P., Park, S., and Melis, A. (2010). Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng. 12, 70-79. doi:10.1016/j.ymben.2009.10.001.
    • (2010) Metab. Eng , vol.12 , pp. 70-79
    • Lindberg, P.1    Park, S.2    Melis, A.3
  • 27
    • 78349292275 scopus 로고    scopus 로고
    • Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium
    • Montagud, A., Navarro, E., Fernández de Córdoba, P., Urchueguía, J. F., and Patil, K. R. (2010). Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. BMC Syst. Biol. 4:156. doi:10.1186/1752-0509-4-156.
    • (2010) BMC Syst. Biol , vol.4 , pp. 156
    • Montagud, A.1    Navarro, E.2    Fernández de Córdoba, P.3    Urchueguía, J.F.4    Patil, K.R.5
  • 28
    • 79952126110 scopus 로고    scopus 로고
    • Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC 6803
    • Montagud, A., Zelezniak, A., Navarro, E., Fernández de Córdoba, P., Urchueguía, J. F., and Patil, K. R. (2011). Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC 6803. Biotechnol. J. 6, 330-342. doi:10.1002/biot.201000109.
    • (2011) Biotechnol. J , vol.6 , pp. 330-342
    • Montagud, A.1    Zelezniak, A.2    Navarro, E.3    Fernández de Córdoba, P.4    Urchueguía, J.F.5    Patil, K.R.6
  • 29
    • 84857137366 scopus 로고    scopus 로고
    • Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis
    • Nogales, J., Gudmundsson, S., Knight, E. M., Palsson, B. O., and Thiele, I. (2012). Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc. Natl. Acad. Sci. U.S.A. 109, 2678-2683. doi:10.1073/pnas.1117907109.
    • (2012) Proc. Natl. Acad. Sci. U.S.A , vol.109 , pp. 2678-2683
    • Nogales, J.1    Gudmundsson, S.2    Knight, E.M.3    Palsson, B.O.4    Thiele, I.5
  • 30
    • 84891457000 scopus 로고    scopus 로고
    • Toward systems metabolic engineering in cyanobacteria: opportunities and bottlenecks
    • Nogales, J., Gudmundsson, S., and Thiele, I. (2013). Toward systems metabolic engineering in cyanobacteria: opportunities and bottlenecks. Bioengineered 4, 158-163. doi:10.4161/bioe.22792.
    • (2013) Bioengineered , vol.4 , pp. 158-163
    • Nogales, J.1    Gudmundsson, S.2    Thiele, I.3
  • 31
    • 84964247550 scopus 로고    scopus 로고
    • A carbon sink pathway increases carbon productivity in cyanobacteria
    • Oliver, J. W. K., and Atsumi, S. (2015). A carbon sink pathway increases carbon productivity in cyanobacteria. Metab. Eng. 29, 106-112. doi:10.1016/j.ymben.2015.03.006.
    • (2015) Metab. Eng , vol.29 , pp. 106-112
    • Oliver, J.W.K.1    Atsumi, S.2
  • 32
    • 84872862096 scopus 로고    scopus 로고
    • Cyanobacterial conversion of carbon dioxide to 2,3-butanediol
    • Oliver, J. W. K., Machado, I. M. P., Yoneda, H., and Atsumi, S. (2013). Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc. Natl. Acad. Sci. U.S.A. 110, 1249-1254. doi:10.1073/pnas.1213024110.
    • (2013) Proc. Natl. Acad. Sci. U.S.A , vol.110 , pp. 1249-1254
    • Oliver, J.W.K.1    Machado, I.M.P.2    Yoneda, H.3    Atsumi, S.4
  • 33
    • 84868275739 scopus 로고    scopus 로고
    • Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803
    • Saha, R., Verseput, A. T., Berla, B. M., Mueller, T. J., Pakrasi, H. B., and Maranas, C. D. (2012). Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. PLoS ONE 7:e48285. doi:10.1371/journal.pone.0048285.
    • (2012) PLoS ONE , vol.7
    • Saha, R.1    Verseput, A.T.2    Berla, B.M.3    Mueller, T.J.4    Pakrasi, H.B.5    Maranas, C.D.6
  • 34
    • 84886418081 scopus 로고    scopus 로고
    • Synthesis of 2,3-butanediol by Synechocystis sp. PCC 6803 via heterologous expression of a catabolic pathway from lactic acid-and enterobacteria
    • Savakis, P. E., Angermayr, S. A., and Hellingwerf, K. J. (2013). Synthesis of 2,3-butanediol by Synechocystis sp. PCC 6803 via heterologous expression of a catabolic pathway from lactic acid-and enterobacteria. Metab. Eng. 20, 121-130. doi:10.1016/j.ymben.2013.09.008.
    • (2013) Metab. Eng , vol.20 , pp. 121-130
    • Savakis, P.E.1    Angermayr, S.A.2    Hellingwerf, K.J.3
  • 35
    • 79551662521 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: the cobra toolbox v2.0
    • Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D., Feist, A. M., et al. (2011). Quantitative prediction of cellular metabolism with constraint-based models: the cobra toolbox v2.0. Nat. Protoc. 6, 1290-1307. doi:10.1038/nprot.2011.308.
    • (2011) Nat. Protoc , vol.6 , pp. 1290-1307
    • Schellenberger, J.1    Que, R.2    Fleming, R.M.T.3    Thiele, I.4    Orth, J.D.5    Feist, A.M.6
  • 37
    • 84889090981 scopus 로고    scopus 로고
    • Metabolic modeling for multi-objective optimization of ethanol production in a Synechocystis mutant
    • Sengupta, T., Bhushan, M., and Wangikar, P. P. (2013). Metabolic modeling for multi-objective optimization of ethanol production in a Synechocystis mutant. Photosynth. Res. 118, 155-165. doi:10.1007/s11120-013-9935-x.
    • (2013) Photosynth. Res , vol.118 , pp. 155-165
    • Sengupta, T.1    Bhushan, M.2    Wangikar, P.P.3
  • 38
    • 84859358212 scopus 로고    scopus 로고
    • Modelling cyanobacteria: from metabolism to integrative models of phototrophic growth
    • Steuer, R., Knoop, H., and Machné, R. (2012). Modelling cyanobacteria: from metabolism to integrative models of phototrophic growth. J. Exp. Bot. 63, 2259-2274. doi:10.1093/jxb/ers018.
    • (2012) J. Exp. Bot , vol.63 , pp. 2259-2274
    • Steuer, R.1    Knoop, H.2    Machné, R.3
  • 39
    • 0037265743 scopus 로고    scopus 로고
    • Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbai locus
    • Takahama, K., Matsuoka, M., Nagahama, K., and Ogawa, T. (2003). Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbai locus. J. Biosci. Bioeng. 95, 302-305. doi:10.1016/S1389-1723(03)80034-8.
    • (2003) J. Biosci. Bioeng , vol.95 , pp. 302-305
    • Takahama, K.1    Matsuoka, M.2    Nagahama, K.3    Ogawa, T.4
  • 41
    • 84873812835 scopus 로고    scopus 로고
    • Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanol production
    • Varman, A. M., Xiao, Y., Pakrasi, H. B., and Tang, Y. J. (2013a). Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanol production. Appl. Environ. Microbiol. 79, 908-914. doi:10.1128/AEM.02827-12.
    • (2013) Appl. Environ. Microbiol , vol.79 , pp. 908-914
    • Varman, A.M.1    Xiao, Y.2    Pakrasi, H.B.3    Tang, Y.J.4
  • 42
    • 84888095603 scopus 로고    scopus 로고
    • Photoautotrophic production of d-lactic acid in an engineered cyanobacterium
    • Varman, A. M., Yu, Y., You, L., and Tang, Y. J. (2013b). Photoautotrophic production of d-lactic acid in an engineered cyanobacterium. Microb. Cell Fact. 12, 117. doi:10.1186/1475-2859-12-117.
    • (2013) Microb. Cell Fact , vol.12 , pp. 117
    • Varman, A.M.1    Yu, Y.2    You, L.3    Tang, Y.J.4
  • 43
    • 67649388222 scopus 로고    scopus 로고
    • Characterization of an alcohol dehydrogenase from the cyanobacterium Synechocystis sp. strain PCC 6803 that responds to environmental stress conditions via the hik34-rre1 two-component system
    • Vidal, R., López-Maury, L., Guerrero, M. G., and Florencio, F. J. (2009). Characterization of an alcohol dehydrogenase from the cyanobacterium Synechocystis sp. strain PCC 6803 that responds to environmental stress conditions via the hik34-rre1 two-component system. J. Bacteriol. 191, 4383-4391. doi:10.1128/JB.00183-09.
    • (2009) J. Bacteriol , vol.191 , pp. 4383-4391
    • Vidal, R.1    López-Maury, L.2    Guerrero, M.G.3    Florencio, F.J.4
  • 44
    • 84877141897 scopus 로고    scopus 로고
    • Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production
    • Vu, T. T., Hill, E. A., Kucek, L. A., Konopka, A. E., Beliaev, A. S., and Reed, J. L. (2013). Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production. Biotechnol. J. 8, 619-630. doi:10.1002/biot.201200315.
    • (2013) Biotechnol. J , vol.8 , pp. 619-630
    • Vu, T.T.1    Hill, E.A.2    Kucek, L.A.3    Konopka, A.E.4    Beliaev, A.S.5    Reed, J.L.6
  • 45
    • 84861120186 scopus 로고    scopus 로고
    • Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142
    • Vu, T. T., Stolyar, S. M., Pinchuk, G. E., Hill, E. A., Kucek, L. A., Brown, R. N., et al. (2012). Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142. PLoS Comput. Biol. 8:e1002460. doi:10.1371/journal.pcbi.1002460.
    • (2012) PLoS Comput. Biol , vol.8
    • Vu, T.T.1    Stolyar, S.M.2    Pinchuk, G.E.3    Hill, E.A.4    Kucek, L.A.5    Brown, R.N.6
  • 46
    • 84877059594 scopus 로고    scopus 로고
    • Engineering cyanobacteria to improve photosynthetic production of alka(e)nes
    • Wang, W., Liu, X., and Lu, X. (2013). Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol. Biofuels 6, 69. doi:10.1186/1754-6834-6-69.
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 69
    • Wang, W.1    Liu, X.2    Lu, X.3
  • 47
    • 82455199087 scopus 로고    scopus 로고
    • Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC 6803
    • Yoshikawa, K., Kojima, Y., Nakajima, T., Furusawa, C., Hirasawa, T., and Shimizu, H. (2011). Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC 6803. Appl. Microbiol. Biotechnol. 92, 347-358. doi:10.1007/s00253-011-3559-x.
    • (2011) Appl. Microbiol. Biotechnol , vol.92 , pp. 347-358
    • Yoshikawa, K.1    Kojima, Y.2    Nakajima, T.3    Furusawa, C.4    Hirasawa, T.5    Shimizu, H.6
  • 48
    • 84869010163 scopus 로고    scopus 로고
    • Mathematical optimization applications in metabolic networks
    • Zomorrodi, A. R., Suthers, P. F., Ranganathan, S., and Maranas, C. D. (2012). Mathematical optimization applications in metabolic networks. Metab. Eng. 14, 672-686. doi:10.1016/j.ymben.2012.09.005.
    • (2012) Metab. Eng , vol.14 , pp. 672-686
    • Zomorrodi, A.R.1    Suthers, P.F.2    Ranganathan, S.3    Maranas, C.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.