메뉴 건너뛰기




Volumn , Issue , 2012, Pages 30-65

Priors: Silent or Active Partners of Bayesian Inference?

Author keywords

Bayesian analyses in practice, in problem solving inference; Formulation of priors, within Bayesian cycle of learning; Jeffreys' priors and maximum likelihood; Methodology for prior models, one of two main goals; Modelling informative priors; Multi faceted role of priors, in Bayesian inference; Prior and communication of results, success of Bayesian inference; Prior formulation, from 'objective' to 'subjective'; Prior, conditionally conjugate for a parameter; Priors, silent or active partners of Bayesian inference

Indexed keywords

INFERENCE ENGINES; MAXIMUM LIKELIHOOD; PROBLEM SOLVING;

EID: 84949788261     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9781118394472.ch3     Document Type: Chapter
Times cited : (4)

References (76)
  • 3
    • 4043150795 scopus 로고    scopus 로고
    • The interplay of Bayesian and Frequentist analysis
    • Bayarri MJ and Berger JO 2004 The interplay of Bayesian and Frequentist analysis. Statistical Science 19, 58-80.
    • (2004) Statistical Science , vol.19 , pp. 58-80
    • Bayarri, M.J.1    Berger, J.O.2
  • 7
    • 84867176040 scopus 로고    scopus 로고
    • The case for objective Bayesian analysis
    • Berger J 2006 The case for objective Bayesian analysis. Bayesian Analysis 1, 385-402.
    • (2006) Bayesian Analysis , vol.1 , pp. 385-402
    • Berger, J.1
  • 8
    • 0001141391 scopus 로고
    • On the development of reference priors (with discussion)
    • (eds JM Bernado et al.), Oxford University Press, Oxford
    • Berger J and Bernardo JM 1992 On the development of reference priors (with discussion). In Bayesian Statistics 4 (eds JM Bernado et al.), pp. 35-60. Oxford University Press, Oxford.
    • (1992) Bayesian Statistics 4 , pp. 35-60
    • Berger, J.1    Bernardo, J.M.2
  • 9
    • 84949869280 scopus 로고    scopus 로고
    • Objective Bayesian statistics: an introduction to Bayesian reference analysis
    • Postgraduate Tutorial Seminar, Valencia 8/ISBA 2006World Meeting on Bayesian Statistics, Spain
    • Bernardo J 2006 Objective Bayesian statistics: an introduction to Bayesian reference analysis. Postgraduate Tutorial Seminar, Valencia 8/ISBA 2006World Meeting on Bayesian Statistics, Spain.
    • (2006)
    • Bernardo, J.1
  • 10
    • 0002183088 scopus 로고
    • Reference posterior distribution for Bayesian inference (with discussion)
    • Bernardo JM 1979 Reference posterior distribution for Bayesian inference (with discussion). Journal of the Royal Statistical Society, Series B 41, 113-147.
    • (1979) Journal of the Royal Statistical Society, Series B , vol.41 , pp. 113-147
    • Bernardo, J.M.1
  • 12
    • 34548229912 scopus 로고    scopus 로고
    • Bayesian beta regression: applications to household expenditure data and genetic distance between foot-and-mouth disease viruses
    • Branscum AJ, JohnsonWO and Thurmond MC 2007 Bayesian beta regression: applications to household expenditure data and genetic distance between foot-and-mouth disease viruses. Australian and New Zealand Journal of Statistics 49(3), 287-301.
    • (2007) Australian and New Zealand Journal of Statistics , vol.49 , Issue.3 , pp. 287-301
    • Branscum, A.J.1    Johnson, W.O.2    Thurmond, M.C.3
  • 14
    • 0000387858 scopus 로고
    • Assessment of a beta prior distribution: PM elicitation
    • Chaloner KM and Duncan GT 1983 Assessment of a beta prior distribution: PM elicitation. The Statistician 32(1/2), 174-180.
    • (1983) The Statistician , vol.32 , Issue.1-2 , pp. 174-180
    • Chaloner, K.M.1    Duncan, G.T.2
  • 17
    • 4043067247 scopus 로고    scopus 로고
    • Probability, causality and the empiricalworld: a Bayes-de Finetti-Popper-Borel synthesis
    • Dawid AP 2004 Probability, causality and the empiricalworld: a Bayes-de Finetti-Popper-Borel synthesis. Statistical Science 19(1), 44-57.
    • (2004) Statistical Science , vol.19 , Issue.1 , pp. 44-57
    • Dawid, A.P.1
  • 18
    • 0000834243 scopus 로고
    • Mémoire sur la probabilité des causes par les événements
    • de la Place PS 1774 Mémoire sur la probabilité des causes par les événements. Memoires de Mathematique et de Physique 6, 621-656.
    • (1774) Memoires de Mathematique et de Physique , vol.6 , pp. 621-656
    • de la Place, P.S.1
  • 19
    • 63849277755 scopus 로고    scopus 로고
    • Geographically assisted elicitation of expert opinion for regression models
    • Denham R and Mengersen K 2007 Geographically assisted elicitation of expert opinion for regression models. Bayesian Analysis 2(1), 99-136.
    • (2007) Bayesian Analysis , vol.2 , Issue.1 , pp. 99-136
    • Denham, R.1    Mengersen, K.2
  • 21
    • 84867122371 scopus 로고    scopus 로고
    • When did Bayesian inference become 'Bayesian'?
    • Fienberg SE 2006 When did Bayesian inference become 'Bayesian'?. Bayesian Analysis 1, 1-40.
    • (2006) Bayesian Analysis , vol.1 , pp. 1-40
    • Fienberg, S.E.1
  • 22
    • 84949869281 scopus 로고    scopus 로고
    • Elicit-n: New method and software for eliciting species richness, Environmental Modelling & Software
    • Fisher R, O'Leary RA, Low-Choy S, Mengersen K and Caley MJ 2012 Elicit-n: New method and software for eliciting species richness, Environmental Modelling & Software.
    • (2012)
    • Fisher, R.1    O'Leary, R.A.2    Low-Choy, S.3    Mengersen, K.4    Caley, M.J.5
  • 23
    • 0042680060 scopus 로고
    • Calibration and the expert problem
    • French S 1986 Calibration and the expert problem. Management Science 32(3), 315-321.
    • (1986) Management Science , vol.32 , Issue.3 , pp. 315-321
    • French, S.1
  • 26
    • 85013119491 scopus 로고    scopus 로고
    • Bayesian variable selection for random intercept modelling of Gaussian and non-Gaussian data
    • Oxford University Press, Oxford
    • Frühwirth-Schnatter S and Wagner H 2011 Bayesian variable selection for random intercept modelling of Gaussian and non-Gaussian data. In Bayesian Statistics 9, pp. 165-200, Oxford University Press, Oxford.
    • (2011) Bayesian Statistics 9 , pp. 165-200
    • Frühwirth-Schnatter, S.1    Wagner, H.2
  • 27
    • 34248236721 scopus 로고
    • Science for the post-normal age
    • Funtowicz SO and Ravetz JR 1993 Science for the post-normal age. Futures 25, 735-755.
    • (1993) Futures , vol.25 , pp. 735-755
    • Funtowicz, S.O.1    Ravetz, J.R.2
  • 28
    • 0004575802 scopus 로고    scopus 로고
    • Quantifying expert opinion in the UK water industry: an experimental study
    • Garthwaite PH and O'Hagan A 2000 Quantifying expert opinion in the UK water industry: an experimental study. The Statistician 49, 455-477.
    • (2000) The Statistician , vol.49 , pp. 455-477
    • Garthwaite, P.H.1    O'Hagan, A.2
  • 29
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman A 2006 Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 1(3), 515-533.
    • (2006) Bayesian Analysis , vol.1 , Issue.3 , pp. 515-533
    • Gelman, A.1
  • 31
    • 84972539429 scopus 로고
    • Combining probability distributions: a critique and an annotated bibliography
    • Genest C and Zidek JV 1986 Combining probability distributions: a critique and an annotated bibliography. Statistical Science 1(1), 114-135.
    • (1986) Statistical Science , vol.1 , Issue.1 , pp. 114-135
    • Genest, C.1    Zidek, J.V.2
  • 33
    • 27844567796 scopus 로고    scopus 로고
    • Elicited priors for Bayesian model specifications in political science research
    • Gill J andWalker LD 2005 Elicited priors for Bayesian model specifications in political science research. Journal of Politics 67(3), 841-872.
    • (2005) Journal of Politics , vol.67 , Issue.3 , pp. 841-872
    • Gill, J.1    Walker, L.D.2
  • 34
    • 33845455708 scopus 로고    scopus 로고
    • Subjective Bayesian analysis: principles and practice
    • Goldstein M 2006 Subjective Bayesian analysis: principles and practice. Bayesian Analysis 1, 403-420.
    • (2006) Bayesian Analysis , vol.1 , pp. 403-420
    • Goldstein, M.1
  • 35
    • 84864119237 scopus 로고    scopus 로고
    • External Bayesian analysis for computer simulators
    • (eds JM Bernardo et al.), Oxford University Press, Oxford
    • Goldstein M 2011 External Bayesian analysis for computer simulators. In Bayesian Statistics 9 (eds JM Bernardo et al.),pp. 201-228. Oxford University Press, Oxford.
    • (2011) Bayesian Statistics 9 , pp. 201-228
    • Goldstein, M.1
  • 36
    • 33645105391 scopus 로고    scopus 로고
    • Alternatives to statistical hypothesis testing in ecology: a guide to self teaching
    • Hobbs NT and Hilborn R 2006 Alternatives to statistical hypothesis testing in ecology: a guide to self teaching. Ecological Applications 16, 5-19.
    • (2006) Ecological Applications , vol.16 , pp. 5-19
    • Hobbs, N.T.1    Hilborn, R.2
  • 37
    • 33947101249 scopus 로고
    • Assessment of probability distributions for continuous random variables: a comparison of the bisection and fixed value methods
    • Hora SC, Hora JA and Dodd NG 1992 Assessment of probability distributions for continuous random variables: a comparison of the bisection and fixed value methods. Organizational Behaviour and Human Decision Processes 51, 135-155.
    • (1992) Organizational Behaviour and Human Decision Processes , vol.51 , pp. 135-155
    • Hora, S.C.1    Hora, J.A.2    Dodd, N.G.3
  • 39
    • 84868296326 scopus 로고    scopus 로고
    • Integrating Bayesian networks and geographic information systems: good practice examples
    • published online 19 September,
    • Johnson S, Low Choy S and Mengersen K 2011 Integrating Bayesian networks and geographic information systems: good practice examples. Integrated Environmental Assessment and Management, published online 19 September, doi: 10.1002/ieam.262.
    • (2011) Integrated Environmental Assessment and Management
    • Johnson, S.1    Low Choy, S.2    Mengersen, K.3
  • 41
    • 84972537499 scopus 로고
    • Comments on the paper by J. H. Ware
    • Kass RE and Greenhouse JB 1989 Comments on the paper by J. H. Ware. Statistical Science 4(4), 310-317.
    • (1989) Statistical Science , vol.4 , Issue.4 , pp. 310-317
    • Kass, R.E.1    Greenhouse, J.B.2
  • 43
    • 34249110915 scopus 로고    scopus 로고
    • Eliciting expert opinion for economic models: an applied example
    • Leal J, Wordsworth S, Legood R and Blair E 2007 Eliciting expert opinion for economic models: an applied example. Value in Health 10(3), 195-203.
    • (2007) Value in Health , vol.10 , Issue.3 , pp. 195-203
    • Leal, J.1    Wordsworth, S.2    Legood, R.3    Blair, E.4
  • 44
    • 0020815093 scopus 로고
    • Reconciliation of probability distributions
    • Lindley D 1983 Reconciliation of probability distributions. Operations Research 31(5), 866-880.
    • (1983) Operations Research , vol.31 , Issue.5 , pp. 866-880
    • Lindley, D.1
  • 45
    • 0001249987 scopus 로고
    • On a measure of the information provided by an experiment
    • Lindley DV 1956 On a measure of the information provided by an experiment. Annals of Mathematical Statistics 27, 986-1005.
    • (1956) Annals of Mathematical Statistics , vol.27 , pp. 986-1005
    • Lindley, D.V.1
  • 46
    • 0031997028 scopus 로고    scopus 로고
    • Combining expert judgment by hierarchical modeling: an application to physician staffing
    • Lipscomb J, Parmigiani G and Hasselblad V 1998 Combining expert judgment by hierarchical modeling: an application to physician staffing. Management Science 44, 149-161.
    • (1998) Management Science , vol.44 , pp. 149-161
    • Lipscomb, J.1    Parmigiani, G.2    Hasselblad, V.3
  • 48
    • 84929274869 scopus 로고    scopus 로고
    • Elicitator: a user-friendly, interactive tool to support the elicitation of expert knowledge
    • (eds AH Perera, CA Drew and CJ Johnson), Springer
    • Low Choy S, James A, Murray J and Mengersen K 2011 Elicitator: a user-friendly, interactive tool to support the elicitation of expert knowledge. In Expert Knowledge and Its Applications in Landscape Ecology (eds AH Perera, CA Drew and CJ Johnson), pp. 39-67. Springer.
    • (2011) Expert Knowledge and Its Applications in Landscape Ecology , pp. 39-67
    • Low Choy, S.1    James, A.2    Murray, J.3    Mengersen, K.4
  • 50
    • 79955833177 scopus 로고    scopus 로고
    • Indirect elicitation from ecological experts: from methods and software to habitat modelling and rock-wallabies
    • (eds A O'Hagan and M West). Oxford University Press, Oxford
    • Low Choy S, Murray J, James A and Mengersen K 2010 Indirect elicitation from ecological experts: from methods and software to habitat modelling and rock-wallabies. In Handbook of Applied Bayesian Analysis (eds A O'Hagan and M West). Oxford University Press, Oxford.
    • (2010) Handbook of Applied Bayesian Analysis
    • Low Choy, S.1    Murray, J.2    James, A.3    Mengersen, K.4
  • 53
    • 0035032782 scopus 로고    scopus 로고
    • Elicitation of expert judgments of climate change impacts on forest ecosystems
    • Morgan MG, Pitelka LF and Shevliakova E 2001 Elicitation of expert judgments of climate change impacts on forest ecosystems. Climate Change 49, 279-307.
    • (2001) Climate Change , vol.49 , pp. 279-307
    • Morgan, M.G.1    Pitelka, L.F.2    Shevliakova, E.3
  • 54
    • 36549088958 scopus 로고    scopus 로고
    • The importance of ecological scale for wildlife conservation in naturally fragmented environments: a case study of the brush-tailed rock-wallaby (Petrogale penicillata)
    • Murray J, Low Choy S, Possingham H and Goldizen A 2008 The importance of ecological scale for wildlife conservation in naturally fragmented environments: a case study of the brush-tailed rock-wallaby (Petrogale penicillata). Biological Conservation 141, 7-22.
    • (2008) Biological Conservation , vol.141 , pp. 7-22
    • Murray, J.1    Low Choy, S.2    Possingham, H.3    Goldizen, A.4
  • 55
    • 67649989012 scopus 로고    scopus 로고
    • How useful is expert opinion for predicting the distribution of a species within and beyond the region of expertise?Acase study using brush-tailed rock-wallabies Petrogale penicillata
    • Murray JV, Goldizen AW, O'Leary RA, McAlpine CA, Possingham H and Low Choy S 2009 How useful is expert opinion for predicting the distribution of a species within and beyond the region of expertise?Acase study using brush-tailed rock-wallabies Petrogale penicillata. Journal of Applied Ecology 46, 842-851.
    • (2009) Journal of Applied Ecology , vol.46 , pp. 842-851
    • Murray, J.V.1    Goldizen, A.W.2    O'Leary, R.A.3    McAlpine, C.A.4    Possingham, H.5    Low Choy, S.6
  • 56
    • 34548446776 scopus 로고    scopus 로고
    • Uncertainty in prior elicitations: a nonparametric approach
    • Oakley JE and O'Hagan A 2007 Uncertainty in prior elicitations: a nonparametric approach. Biometrika 94, 427-441.
    • (2007) Biometrika , vol.94 , pp. 427-441
    • Oakley, J.E.1    O'Hagan, A.2
  • 59
    • 67650164484 scopus 로고    scopus 로고
    • Comparison of three elicitation methods for logistic regression on predicting the presence of the threatened brush-tailed rock-wallaby Petrogale penicillata
    • O'Leary R, Low Choy S, Murray J, Kynn M, Denham R, Martin T and Mengersen K 2009 Comparison of three elicitation methods for logistic regression on predicting the presence of the threatened brush-tailed rock-wallaby Petrogale penicillata. Environmetrics 20, 379-398.
    • (2009) Environmetrics , vol.20 , pp. 379-398
    • O'Leary, R.1    Low Choy, S.2    Murray, J.3    Kynn, M.4    Denham, R.5    Martin, T.6    Mengersen, K.7
  • 63
    • 0000599677 scopus 로고    scopus 로고
    • Mixtures of distributions: inference and estimation
    • (eds WR Gilks, S Richardson and DJ Spiegelhalter), Chapman & Hall, London
    • Robert CP 1996 Mixtures of distributions: inference and estimation. In Markov Chain Monte Carlo in Practice (eds WR Gilks, S Richardson and DJ Spiegelhalter), pp. 441-464. Chapman & Hall, London.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 441-464
    • Robert, C.P.1
  • 67
    • 0003436017 scopus 로고    scopus 로고
    • Bayesian methods for mixtures of normal distributions
    • PhD thesis. Faculty of Mathematical Sciences
    • Stephens M 1997 Bayesian methods for mixtures of normal distributions. PhD thesis. Faculty of Mathematical Sciences.
    • (1997)
    • Stephens, M.1
  • 68
    • 84972496616 scopus 로고
    • Laplace's 1774 memoir on inverse probability
    • Stigler SM 1986 Laplace's 1774 memoir on inverse probability. Statistical Science 1(3), 359-363.
    • (1986) Statistical Science , vol.1 , Issue.3 , pp. 359-363
    • Stigler, S.M.1
  • 70
    • 0001373820 scopus 로고
    • The Delphi technique and its uses in social science research
    • Strauss H and Zeigler L 1975 The Delphi technique and its uses in social science research. Journal of Creative Behaviour 9, 253-259.
    • (1975) Journal of Creative Behaviour , vol.9 , pp. 253-259
    • Strauss, H.1    Zeigler, L.2
  • 71
  • 72
    • 39049108737 scopus 로고    scopus 로고
    • A comparison of Bayes-Laplace, Jeffreys, and other priors: the case of zero events
    • Tuyl F, Gerlach R and Mengersen K 2008 A comparison of Bayes-Laplace, Jeffreys, and other priors: the case of zero events. The American Statistician 62(1), 40-44.
    • (2008) The American Statistician , vol.62 , Issue.1 , pp. 40-44
    • Tuyl, F.1    Gerlach, R.2    Mengersen, K.3
  • 73
    • 34047185270 scopus 로고    scopus 로고
    • Advantages and challenges of Bayesian networks in environmental modelling
    • Uusitalo L 2007 Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling 203, 312-318.
    • (2007) Ecological Modelling , vol.203 , pp. 312-318
    • Uusitalo, L.1
  • 74
    • 0001423726 scopus 로고
    • Generalized linear models: scale parameters, outlier accommodation and prior distributions
    • (eds JM Bernardo et al.). North-Holland, Amsterdam
    • West M 1985 Generalized linear models: scale parameters, outlier accommodation and prior distributions. In Bayesian Statistics 2 (eds JM Bernardo et al.). North-Holland, Amsterdam.
    • (1985) Bayesian Statistics 2
    • West, M.1
  • 75
    • 84869392668 scopus 로고    scopus 로고
    • Using Bayesian mixture models that combine expert knowledge and GIS data to define ecoregions
    • (eds AH Perera, CA Drew and CJ Johnson), Springer, New York
    • Williams K, LowChoy S, Rochester Wand Alston C 2011 Using Bayesian mixture models that combine expert knowledge and GIS data to define ecoregions. In Expert Knowledge and its Application in Landscape Ecology (eds AH Perera, CA Drew and CJ Johnson), pp. 229-251. Springer, New York.
    • (2011) Expert Knowledge and its Application in Landscape Ecology , pp. 229-251
    • Williams, K.1    LowChoy, S.2    Rochester, W.3    Alston, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.