메뉴 건너뛰기




Volumn 9781461441458, Issue , 2013, Pages 317-346

Bayesian wavelet shrinkage strategies: A review

Author keywords

[No Author keywords available]

Indexed keywords

PLETHYSMOGRAPHY; SHRINKAGE;

EID: 84949175990     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-1-4614-4145-8_14     Document Type: Chapter
Times cited : (4)

References (95)
  • 1
    • 2942560782 scopus 로고    scopus 로고
    • On optimality of Bayesian wavelet estimators
    • Abramovich F, Amato U, Angelini C (2004) On optimality of Bayesian wavelet estimators. Scand J Stat 31:217-234
    • (2004) Scand J Stat , vol.31 , pp. 217-234
    • Abramovich, F.1    Amato, U.2    Angelini, C.3
  • 3
    • 0001849748 scopus 로고    scopus 로고
    • Wavelet analysis and its statistical applications
    • Abramovich F, Bailey TC, Sapatinas T (2000) Wavelet analysis and its statistical applications. Statist 49:1-29
    • (2000) Statist , vol.49 , pp. 1-29
    • Abramovich, F.1    Bailey, T.C.2    Sapatinas, T.3
  • 4
    • 0037189287 scopus 로고    scopus 로고
    • Empirical Bayes approach to block wavelet function estimation
    • Abramovich F, Besbeas P, Sapatinas T (2002) Empirical Bayes approach to block wavelet function estimation. Comput Stat Data Anal 39:435-451
    • (2002) Comput Stat Data Anal , vol.39 , pp. 435-451
    • Abramovich, F.1    Besbeas, P.2    Sapatinas, T.3
  • 5
    • 33746242092 scopus 로고    scopus 로고
    • Adapting to unknown sparsity by controlling the false discovery rate
    • Abramovich F, Benjamini Y, Donoho DL, Johnstone IM (2006) Adapting to unknown sparsity by controlling the false discovery rate. Ann Stat 34:584-653
    • (2006) Ann Stat , vol.34 , pp. 584-653
    • Abramovich, F.1    Benjamini, Y.2    Donoho, D.L.3    Johnstone, I.M.4
  • 6
    • 77249153180 scopus 로고    scopus 로고
    • On Bayesian "testimation" and its application to wavelet thresholding
    • Abramovich F, Grinshtein V, Petsa A, Sapatinas T (2010) On Bayesian "testimation" and its application to wavelet thresholding. Biometrika 97:181-198
    • (2010) Biometrika , vol.97 , pp. 181-198
    • Abramovich, F.1    Grinshtein, V.2    Petsa, A.3    Sapatinas, T.4
  • 8
    • 11844300380 scopus 로고    scopus 로고
    • Image denoising using bivariate α-stable distributions in the complex wavelet domain
    • Achim A, Kuruoʇlu EE (2005) Image denoising using bivariate α-stable distributions in the complex wavelet domain. IEEE Signal Process Lett 12:17-20
    • (2005) IEEE Signal Process Lett , vol.12 , pp. 17-20
    • Achim, A.1    Kuruoʇlu, E.E.2
  • 10
    • 3042709667 scopus 로고    scopus 로고
    • Empirical Bayes approach to wavelet regression using ε-contaminated priors
    • Angelini C, Sapatinas T (2004) Empirical Bayes approach to wavelet regression using ε-contaminated priors. J Stat Comput Simul 74:741-764
    • (2004) J Stat Comput Simul , vol.74 , pp. 741-764
    • Angelini, C.1    Sapatinas, T.2
  • 11
    • 1842487344 scopus 로고    scopus 로고
    • Γ-minimax wavelet shrinkage: A robust incorporation of information about energy of a signal in denoising applications
    • Angelini C, Vidakovic B (2004) Γ-minimax wavelet shrinkage: a robust incorporation of information about energy of a signal in denoising applications. Stat Sinica 14:103-125
    • (2004) Stat Sinica , vol.14 , pp. 103-125
    • Angelini, C.1    Vidakovic, B.2
  • 12
    • 84857394773 scopus 로고    scopus 로고
    • Wavelet methods in statistics: Some recent developments and their applications
    • Antoniadis A (2007) Wavelet methods in statistics: some recent developments and their applications. Stat Surv 1:16-55
    • (2007) Stat Surv , vol.1 , pp. 16-55
    • Antoniadis, A.1
  • 13
    • 0012780893 scopus 로고    scopus 로고
    • Wavelet estimators in nonparametric regression: A comparative simulation study
    • Antoniadis A, Bigot J, Sapatinas T (2001) Wavelet estimators in nonparametric regression: a comparative simulation study. J Stat Softw 6:1-83
    • (2001) J Stat Softw , vol.6 , pp. 1-83
    • Antoniadis, A.1    Bigot, J.2    Sapatinas, T.3
  • 14
    • 8644253439 scopus 로고    scopus 로고
    • Real nonparametric regression using complex wavelets
    • Barber S, Nason GP (2004) Real nonparametric regression using complex wavelets. J Roy Stat Soc Ser B 66:927-939
    • (2004) J Roy Stat Soc Ser B , vol.66 , pp. 927-939
    • Barber, S.1    Nason, G.P.2
  • 15
    • 0036013003 scopus 로고    scopus 로고
    • Posterior probability intervals for wavelet thresholding
    • Barber S, Nason GP, Silverman BW (2002) Posterior probability intervals for wavelet thresholding. J Roy Stat Soc Ser B 64:189-205
    • (2002) J Roy Stat Soc Ser B , vol.64 , pp. 189-205
    • Barber, S.1    Nason, G.P.2    Silverman, B.W.3
  • 16
    • 66249095680 scopus 로고    scopus 로고
    • On pointwise optimality of Bayes factor wavelet regression estimators
    • Bochkina N, Sapatinas T (2006) On pointwise optimality of Bayes factor wavelet regression estimators. Sankhy-a 68:513-541
    • (2006) Sankhy-a , vol.68 , pp. 513-541
    • Bochkina, N.1    Sapatinas, T.2
  • 17
    • 73249148656 scopus 로고    scopus 로고
    • Minimax rates of convergence and optimality of Bayes factor wavelet regression estimators under pointwise risks
    • Bochkina N, Sapatinas T (2009) Minimax rates of convergence and optimality of Bayes factor wavelet regression estimators under pointwise risks. Stat Sinica 19:1389-1406
    • (2009) Stat Sinica , vol.19 , pp. 1389-1406
    • Bochkina, N.1    Sapatinas, T.2
  • 18
    • 33646771024 scopus 로고    scopus 로고
    • A closed-form nonparametric Bayesian estimator in the wavelet domain of images using an approximate α-stable prior
    • Boubchir L, Fadili JM (2006) A closed-form nonparametric Bayesian estimator in the wavelet domain of images using an approximate α-stable prior. Pattern Recogn Lett 27:1370-1382
    • (2006) Pattern Recogn Lett , vol.27 , pp. 1370-1382
    • Boubchir, L.1    Fadili, J.M.2
  • 19
    • 0033248624 scopus 로고    scopus 로고
    • Adaptive wavelet estimation: A block thresholding and oracle inequality approach
    • Cai T (1999) Adaptive wavelet estimation: a block thresholding and oracle inequality approach. Ann Stat 27:898-924
    • (1999) Ann Stat , vol.27 , pp. 898-924
    • Cai, T.1
  • 20
    • 0036822482 scopus 로고    scopus 로고
    • On block thresholding in wavelet regression: Adaptivity, block size, and threshold level
    • Cai T (2002) On block thresholding in wavelet regression: adaptivity, block size, and threshold level. Stat Sinica 12:1241-1273
    • (2002) Stat Sinica , vol.12 , pp. 1241-1273
    • Cai, T.1
  • 21
    • 0001298787 scopus 로고    scopus 로고
    • Incorporating information on neighboring coefficients into wavelet estimation
    • Cai T, Silverman BW (2001) Incorporating information on neighboring coefficients into wavelet estimation. Sankhy'a, Ser B 63:127-148
    • (2001) Sankhy'a, Ser B , vol.63 , pp. 127-148
    • Cai, T.1    Silverman, B.W.2
  • 22
    • 65349108741 scopus 로고    scopus 로고
    • A data-driven block thresholding approach to wavelet estimation
    • Cai T, Zhou H (2009) A data-driven block thresholding approach to wavelet estimation. Ann Stat 37:569-595
    • (2009) Ann Stat , vol.37 , pp. 569-595
    • Cai, T.1    Zhou, H.2
  • 23
    • 0034258869 scopus 로고    scopus 로고
    • Adaptive wavelet thresholding for image denoising and compression
    • Chang SG, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9:1532-1546
    • (2000) IEEE Trans Image Process , vol.9 , pp. 1532-1546
    • Chang, S.G.1    Yu, B.2    Vetterli, M.3
  • 24
    • 0037632792 scopus 로고    scopus 로고
    • Block thresholding and wavelet estimation for nonequispaced samples
    • Chicken E (2003) Block thresholding and wavelet estimation for nonequispaced samples. J Stat Plan Inf 116:113-129
    • (2003) J Stat Plan Inf , vol.116 , pp. 113-129
    • Chicken, E.1
  • 25
    • 16644374768 scopus 로고    scopus 로고
    • Block-dependent thresholding in wavelet regression
    • Chicken E (2005) Block-dependent thresholding in wavelet regression. J Nonparametr Stat 17:467-491
    • (2005) J Nonparametr Stat , vol.17 , pp. 467-491
    • Chicken, E.1
  • 26
    • 34547366720 scopus 로고    scopus 로고
    • Nonparametric regression with sample design following a random process
    • Chicken E (2007) Nonparametric regression with sample design following a random process. Commun Stat Theor Meth 36:1915-1934
    • (2007) Commun Stat Theor Meth , vol.36 , pp. 1915-1934
    • Chicken, E.1
  • 28
    • 0040062667 scopus 로고    scopus 로고
    • ISDS discussion paper, Duke University, Institute of Statistics and Decision Sciences
    • Clyde M, George E (1998) Robust empirical Bayes estimation in wavelets. ISDS discussion paper, Duke University, Institute of Statistics and Decision Sciences
    • (1998) Robust Empirical Bayes Estimation in Wavelets
    • Clyde, M.1    George, E.2
  • 29
    • 0001477056 scopus 로고    scopus 로고
    • Empirical Bayes estimation in wavelet nonparametric regression
    • Müller P, Vidakovic B eds., Springer-Verlag, New York
    • Clyde M, George E (1999) Empirical Bayes estimation in wavelet nonparametric regression. In: Müller P, Vidakovic B (eds.) Bayesian inference in wavelet based models. Lecture notes in statistics, vol 141. Springer-Verlag, New York, pp 309-322
    • (1999) Bayesian Inference in Wavelet Based Models. Lecture Notes in Statistics , vol.141 , pp. 309-322
    • Clyde, M.1    George, E.2
  • 30
    • 0034354040 scopus 로고    scopus 로고
    • Flexible empirical Bayes estimation for wavelets
    • Clyde M, George E (2000) Flexible empirical Bayes estimation for wavelets. J Roy Stat Soc Ser B 62:681-698
    • (2000) J Roy Stat Soc Ser B , vol.62 , pp. 681-698
    • Clyde, M.1    George, E.2
  • 31
    • 0001682758 scopus 로고    scopus 로고
    • Multiple shrinkage and subset selection in wavelets
    • Clyde M, Parmigiani G, Vidakovic B (1998) Multiple shrinkage and subset selection in wavelets. Biometrika 85:391-402
    • (1998) Biometrika , vol.85 , pp. 391-402
    • Clyde, M.1    Parmigiani, G.2    Vidakovic, B.3
  • 34
    • 3042672591 scopus 로고    scopus 로고
    • Wavelet Bayesian block shrinkage via mixtures of normalinverse gamma priors
    • De Canditiis D, Vidakovic B (2004) Wavelet Bayesian block shrinkage via mixtures of normalinverse gamma priors. J Comput Graph Stat 13:383-398
    • (2004) J Comput Graph Stat , vol.13 , pp. 383-398
    • De Canditiis, D.1    Vidakovic, B.2
  • 35
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • Donoho D, Johnstone I (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425-455
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.1    Johnstone, I.2
  • 36
    • 4744344928 scopus 로고    scopus 로고
    • Analysis of blockwise shrinkage wavelet estimates via lower bounds for no-signal setting
    • Efromovich S (2004) Analysis of blockwise shrinkage wavelet estimates via lower bounds for no-signal setting. Ann Inst Stat Math 56:205-223
    • (2004) Ann Inst Stat Math , vol.56 , pp. 205-223
    • Efromovich, S.1
  • 37
    • 13244268341 scopus 로고    scopus 로고
    • Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities
    • Fadili J, Boubchir L (2005) Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities. IEEE Trans Image Process 14:231-240
    • (2005) IEEE Trans Image Process , vol.14 , pp. 231-240
    • Fadili, J.1    Boubchir, L.2
  • 38
    • 0035442514 scopus 로고    scopus 로고
    • Wavelet-based image estimation: An empirical bayes approach using Jeffreys' noninformative prior
    • Figueiredo M, Nowak R (2001) Wavelet-based image estimation: an empirical bayes approach using Jeffreys' noninformative prior. IEEE Trans Image Process 10:1322-1331
    • (2001) IEEE Trans Image Process , vol.10 , pp. 1322-1331
    • Figueiredo, M.1    Nowak, R.2
  • 39
    • 0026628466 scopus 로고
    • Wavelet analysis and synthesis of fractional Brownian motion
    • Flandrin P (1992) Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans Inf Theor 38:910-917
    • (1992) IEEE Trans Inf Theor , vol.38 , pp. 910-917
    • Flandrin, P.1
  • 40
    • 33846361922 scopus 로고    scopus 로고
    • Bivariate hard thresholding in wavelet function estimation
    • Fryzlewicz P (2007) Bivariate hard thresholding in wavelet function estimation. Stat Sinica 17:1457-1481
    • (2007) Stat Sinica , vol.17 , pp. 1457-1481
    • Fryzlewicz, P.1
  • 41
    • 0031526204 scopus 로고    scopus 로고
    • Approaches to Bayesian variable selection
    • George EI, McCulloch R (1997) Approaches to Bayesian variable selection. Stat Sinica 7:339-373
    • (1997) Stat Sinica , vol.7 , pp. 339-373
    • George, E.I.1    McCulloch, R.2
  • 42
    • 0001335749 scopus 로고    scopus 로고
    • A multivariate generalization of the power exponential family of distributions
    • Gomez E, Gomez-Villegas MA, Marin JM (1998) A multivariate generalization of the power exponential family of distributions. Commun Stat Theor Meth 27:589-600
    • (1998) Commun Stat Theor Meth , vol.27 , pp. 589-600
    • Gomez, E.1    Gomez-Villegas, M.A.2    Marin, J.M.3
  • 43
    • 38949172719 scopus 로고    scopus 로고
    • Multivariate exponential power distributions as mixtures of normal distributions with Bayesian applications
    • Gomez E, Gomez-Villegasa MA, Marnb JM (2008) Multivariate exponential power distributions as mixtures of normal distributions with Bayesian applications. Commun Stat TheorMeth 37:972-985
    • (2008) Commun Stat TheorMeth , vol.37 , pp. 972-985
    • Gomez, E.1    Gomez-Villegasa, M.A.2    Marnb, J.M.3
  • 44
    • 0032360314 scopus 로고    scopus 로고
    • Block threshold rules for curve estimation using kernel and wavelet methods
    • Hall P, Kerkyacharian G, Picard D (1998) Block threshold rules for curve estimation using kernel and wavelet methods. Ann Stat 26:922-942
    • (1998) Ann Stat , vol.26 , pp. 922-942
    • Hall, P.1    Kerkyacharian, G.2    Picard, D.3
  • 45
    • 0347181848 scopus 로고    scopus 로고
    • On the minimax optimality of block thresholded wavelet estimators
    • Hall P, Kerkyacharian G, Picard D (1999) On the minimax optimality of block thresholded wavelet estimators. Stat Sinica 9:33-50
    • (1999) Stat Sinica , vol.9 , pp. 33-50
    • Hall, P.1    Kerkyacharian, G.2    Picard, D.3
  • 46
    • 0041939587 scopus 로고    scopus 로고
    • Numerical performance of block thresholded wavelet estimators
    • Hall P, Penev S, Kerkyacharian G, Picard D (1997) Numerical performance of block thresholded wavelet estimators. Stat Comput 7:115-124
    • (1997) Stat Comput , vol.7 , pp. 115-124
    • Hall, P.1    Penev, S.2    Kerkyacharian, G.3    Picard, D.4
  • 47
    • 23044469888 scopus 로고    scopus 로고
    • Multivariate Bayes wavelet shrinkage and applications
    • Huerta G (2005) Multivariate Bayes wavelet shrinkage and applications. J Appl Stat 32:529-542
    • (2005) J Appl Stat , vol.32 , pp. 529-542
    • Huerta, G.1
  • 48
    • 1542573394 scopus 로고    scopus 로고
    • Empirical Bayes approach to improve wavelet thresholding for image noise reduction
    • Jansen M, Bultheel A (2001) Empirical Bayes approach to improve wavelet thresholding for image noise reduction. J Am Stat Assoc 96:629-639
    • (2001) J Am Stat Assoc , vol.96 , pp. 629-639
    • Jansen, M.1    Bultheel, A.2
  • 49
    • 0001013273 scopus 로고    scopus 로고
    • Wavelet threshold estimators for data with correlated noise
    • Johnstone I, Silverman BW (1997) Wavelet threshold estimators for data with correlated noise. J Roy Stat Soc Ser B 59:319-351
    • (1997) J Roy Stat Soc Ser B , vol.59 , pp. 319-351
    • Johnstone, I.1    Silverman, B.W.2
  • 50
    • 0003398270 scopus 로고    scopus 로고
    • Empirical Bayes approaches to mixture problems and wavelet regression
    • Department of Statistics, Stanford University
    • Johnstone I, Silverman BW (1998) Empirical Bayes approaches to mixture problems and wavelet regression. In: Technical report. Department of Statistics, Stanford University
    • (1998) Technical Report
    • Johnstone, I.1    Silverman, B.W.2
  • 51
    • 18444410406 scopus 로고    scopus 로고
    • Empirical Bayes selection of wavelet thresholds
    • Johnstone IM, Silverman BW (2005a) Empirical Bayes selection of wavelet thresholds. Ann Stat 33:1700-1752
    • (2005) Ann Stat , vol.33 , pp. 1700-1752
    • Johnstone, I.M.1    Silverman, B.W.2
  • 52
    • 26444493657 scopus 로고    scopus 로고
    • Ebayesthresh: R programs for empirical Bayes thresholding
    • With accompanying software and manual.
    • Johnstone IM, Silverman BW (2005b) Ebayesthresh: R programs for empirical Bayes thresholding. J Stat Softw 12:1-38 (With accompanying software and manual.)
    • (2005) J Stat Softw , vol.12 , pp. 1-38
    • Johnstone, I.M.1    Silverman, B.W.2
  • 53
    • 85193169357 scopus 로고    scopus 로고
    • Computer Science and Engineering Department, University of California Riverside
    • Keogh E, Folias T (2002) UCR time series classification/clustering page. Computer Science and Engineering Department, University of California Riverside Available at http://www.cs. ucr.edu/eamonn/time series data
    • (2002) UCR Time Series Classification/clustering Page
    • Keogh, E.1    Folias, T.2
  • 54
    • 0034406376 scopus 로고    scopus 로고
    • Wavelet estimation using Bayesian basis selection and basis averaging
    • Kohn R, Marron JS, Yau P (2000) Wavelet estimation using Bayesian basis selection and basis averaging. Stat Sinica 10:109-128
    • (2000) Stat Sinica , vol.10 , pp. 109-128
    • Kohn, R.1    Marron, J.S.2    Yau, P.3
  • 55
    • 0442325090 scopus 로고    scopus 로고
    • Extending the scope of wavelet regression methods by coefficient-dependent thresholding
    • Kovac A, Silverman BW (2000) Extending the scope of wavelet regression methods by coefficient-dependent thresholding. J Am Stat Assoc 95:172-183
    • (2000) J Am Stat Assoc , vol.95 , pp. 172-183
    • Kovac, A.1    Silverman, B.W.2
  • 56
    • 0027840405 scopus 로고
    • Applications of complex valued wavelet transforms to subband decomposition
    • Lawton W (1993) Applications of complex valued wavelet transforms to subband decomposition. IEEE Trans Signal Process 41:3566-3569
    • (1993) IEEE Trans Signal Process , vol.41 , pp. 3566-3569
    • Lawton, W.1
  • 57
    • 0342763788 scopus 로고    scopus 로고
    • Wavelet thresholding for a wide class of noise distributions
    • Rhodes, Greece
    • Leporini D, Pesquet J-C (1998) Wavelet thresholding for a wide class of noise distributions. EUSIPCO'98, Rhodes, Greece, pp 993-996
    • (1998) EUSIPCO'98 , pp. 993-996
    • Leporini, D.1    Pesquet, J.-C.2
  • 58
    • 0034831995 scopus 로고    scopus 로고
    • Bayesian wavelet denoising: Besov priors and non-gaussian noises
    • Leporini D, Pesquet J-C (2001) Bayesian wavelet denoising: Besov priors and non-gaussian noises. Signal Process 81:55-67
    • (2001) Signal Process , vol.81 , pp. 55-67
    • Leporini, D.1    Pesquet, J.-C.2
  • 59
    • 0031166725 scopus 로고    scopus 로고
    • Image processing with complex Daubechies wavelets
    • Lina J-M (1997) Image processing with complex Daubechies wavelets. J Math Imag Vis 7:211-223
    • (1997) J Math Imag Vis , vol.7 , pp. 211-223
    • Lina, J.-M.1
  • 63
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674-693
    • (1989) IEEE Trans Pattern Anal Mach Intell , vol.11 , pp. 674-693
    • Mallat, S.1
  • 64
    • 0032662774 scopus 로고    scopus 로고
    • Analysis of multiresolution image denoising schemes using a generalized Gaussian and complexity priors
    • Moulin P, Liu J (1999) Analysis of multiresolution image denoising schemes using a generalized Gaussian and complexity priors. IEEE Trans Inf Theor 45:909-919
    • (1999) IEEE Trans Inf Theor , vol.45 , pp. 909-919
    • Moulin, P.1    Liu, J.2
  • 65
    • 0000446730 scopus 로고    scopus 로고
    • Bayesian inference in wavelet based models
    • Springer-Verlag, New York
    • Müller P, Vidakovic B (eds.) (1999c) Bayesian inference in wavelet based models. Lecture notes in statistics, vol 141. Springer-Verlag, New York
    • (1999) Lecture Notes in Statistics , vol.141
    • Müller, P.1    Vidakovic, B.2
  • 66
    • 33749809523 scopus 로고    scopus 로고
    • Wavelet shrinkage using cross-validation
    • Nason GP (1996) Wavelet shrinkage using cross-validation. J Roy Stat Soc Ser B 58:463-479
    • (1996) J Roy Stat Soc Ser B , vol.58 , pp. 463-479
    • Nason, G.P.1
  • 69
    • 14844344980 scopus 로고    scopus 로고
    • 'Analytic' wavelet thresholding
    • Olhede S, Walden A (2004) 'Analytic' wavelet thresholding. Biometrika 91:955-973
    • (2004) Biometrika , vol.91 , pp. 955-973
    • Olhede, S.1    Walden, A.2
  • 70
    • 33746253031 scopus 로고    scopus 로고
    • Frequentist optimality of Bayesian wavelet shrinkage rules for Gaussian and non-Gaussian noise
    • Pensky M (2006) Frequentist optimality of Bayesian wavelet shrinkage rules for Gaussian and non-Gaussian noise. Ann Stat 34:769-807
    • (2006) Ann Stat , vol.34 , pp. 769-807
    • Pensky, M.1
  • 71
    • 34547514201 scopus 로고    scopus 로고
    • Frequentist optimality of Bayes factor thresholding estimators in wavelet regression models
    • Pensky M, Sapatinas T (2007) Frequentist optimality of Bayes factor thresholding estimators in wavelet regression models. Stat Sinica 17:599-633
    • (2007) Stat Sinica , vol.17 , pp. 599-633
    • Pensky, M.1    Sapatinas, T.2
  • 72
    • 0000219347 scopus 로고
    • Exact and approximate posterior moments for a normal location parameter
    • Pericchi LR, Smith AFM (1992) Exact and approximate posterior moments for a normal location parameter. J Roy Stat Soc Ser B 54:793-804
    • (1992) J Roy Stat Soc Ser B , vol.54 , pp. 793-804
    • Pericchi, L.R.1    Smith, A.F.M.2
  • 73
    • 0036563492 scopus 로고    scopus 로고
    • A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising
    • Pižurica A, Philips W, Lemahieu I, Acheroy M (2002) A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising. IEEE Trans Image Process 11:545-557
    • (2002) IEEE Trans Image Process , vol.11 , pp. 545-557
    • Pižurica, A.1    Philips, W.2    Lemahieu, I.3    Acheroy, M.4
  • 75
    • 10844250301 scopus 로고    scopus 로고
    • A Bayesian transformation model for wavelet shrinkage
    • Ray S, Mallick BK (2003) A Bayesian transformation model for wavelet shrinkage. IEEE Trans Image Process 12:1512-1521
    • (2003) IEEE Trans Image Process , vol.12 , pp. 1512-1521
    • Ray, S.1    Mallick, B.K.2
  • 76
    • 0035398091 scopus 로고    scopus 로고
    • Bayesian tree structured image modeling using wavelet-domain hidden Markov models
    • Romberg JK, Choi H, Baraniuk RG (2001) Bayesian tree structured image modeling using wavelet-domain hidden Markov models. IEEE Trans Image Process 10:1056-1068
    • (2001) IEEE Trans Image Process , vol.10 , pp. 1056-1068
    • Romberg, J.K.1    Choi, H.2    Baraniuk, R.G.3
  • 77
    • 67649318909 scopus 로고    scopus 로고
    • Robust Bayesian and Bayesian decision theoretic wavelet shrinkage
    • Müller P, Vidakovic B eds., Springer-Verlag, New York
    • Ruggeri F (1999) Robust Bayesian and Bayesian decision theoretic wavelet shrinkage. In: Müller P, Vidakovic B (eds.) Bayesian inference in wavelet based models. Lecture Notes in Statistics, vol 141. Springer-Verlag, New York, pp 139-154
    • (1999) Bayesian Inference in Wavelet Based Models. Lecture Notes in Statistics , vol.141 , pp. 139-154
    • Ruggeri, F.1
  • 79
    • 24944448739 scopus 로고    scopus 로고
    • Posterior probability intervals in Bayesian wavelet estimation
    • Semadeni C, Davison AC, Hinkley DV (2004) Posterior probability intervals in Bayesian wavelet estimation. Biometrika 91:497-505
    • (2004) Biometrika , vol.91 , pp. 497-505
    • Semadeni, C.1    Davison, A.C.2    Hinkley, D.V.3
  • 80
    • 0036844073 scopus 로고    scopus 로고
    • Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency
    • Sendur L, Selesnick IW (2002) Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans Signal Process 50:2744-2756
    • (2002) IEEE Trans Signal Process , vol.50 , pp. 2744-2756
    • Sendur, L.1    Selesnick, I.W.2
  • 81
    • 0000446730 scopus 로고    scopus 로고
    • Bayesian denoising of visual images in the wavelet domain
    • Müller P, Vidakovic B eds., Springer-Verlag, New York
    • Simoncelli E (1999) Bayesian denoising of visual images in the wavelet domain. In: Müller P, Vidakovic B (eds.) Bayesian inference in wavelet based models. Lecture Notes in Statistics, vol 141. Springer-Verlag, New York, pp 291-308
    • (1999) Bayesian Inference in Wavelet Based Models. Lecture Notes in Statistics , vol.141 , pp. 291-308
    • Simoncelli, E.1
  • 82
    • 15044348098 scopus 로고    scopus 로고
    • Wavelet thresholding with Bayesian false discovery rate control
    • Tadesse MG, Ibrahim JG, Vannucci M, Gentleman R (2005) Wavelet thresholding with Bayesian false discovery rate control. Biometrics 61:25-35
    • (2005) Biometrics , vol.61 , pp. 25-35
    • Tadesse, M.G.1    Ibrahim, J.G.2    Vannucci, M.3    Gentleman, R.4
  • 83
    • 33750286670 scopus 로고    scopus 로고
    • Bayesian sigmoid shrinkage with improper variance priors and an application to wavelet denoising
    • Ter Braak CJF (2010) Bayesian sigmoid shrinkage with improper variance priors and an application to wavelet denoising. Comput Stat Data Anal 51:1232-1242
    • (2010) Comput Stat Data Anal , vol.51 , pp. 1232-1242
    • Ter Braak, C.J.F.1
  • 84
    • 0033478457 scopus 로고    scopus 로고
    • Covariance structure of wavelet coefficients: Theory and models in a Bayesian perspective
    • Vannucci M, Corradi F (1999) Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective. J Roy Stat Soc Ser B 61:971-986
    • (1999) J Roy Stat Soc Ser B , vol.61 , pp. 971-986
    • Vannucci, M.1    Corradi, F.2
  • 85
    • 0032349461 scopus 로고    scopus 로고
    • Nonlinear wavelet shrinkage with Bayes rules and Bayes factors
    • Vidakovic B (1998a) Nonlinear wavelet shrinkage with Bayes rules and Bayes factors. J Am Stat Assoc 93:173-179
    • (1998) J Am Stat Assoc , vol.93 , pp. 173-179
    • Vidakovic, B.1
  • 89
    • 0042044256 scopus 로고    scopus 로고
    • Expansion estimation by Bayes rules
    • Vidakovic B, Ruggeri F (1999) Expansion estimation by Bayes rules. J Stat Plan Inf 79:223-235
    • (1999) J Stat Plan Inf , vol.79 , pp. 223-235
    • Vidakovic, B.1    Ruggeri, F.2
  • 90
    • 0141819645 scopus 로고    scopus 로고
    • BAMS method: Theory and simulations
    • Vidakovic B, Ruggeri F (2001) BAMS method: theory and simulations. Sankhy-a, Ser B 63:234-249
    • (2001) Sankhy-a, Ser B , vol.63 , pp. 234-249
    • Vidakovic, B.1    Ruggeri, F.2
  • 92
    • 35348897501 scopus 로고    scopus 로고
    • Bayesian curve classification using wavelets
    • Wang X, Ray S, Mallick BK (2007) Bayesian curve classification using wavelets. J Am Stat Assoc 102:962-973
    • (2007) J Am Stat Assoc , vol.102 , pp. 962-973
    • Wang, X.1    Ray, S.2    Mallick, B.K.3
  • 94
    • 77951044672 scopus 로고    scopus 로고
    • Wavelet estimation of an unknown function observed with correlated noise
    • Wang X, Wood ATA (2010) Wavelet estimation of an unknown function observed with correlated noise. Commun Stat Simul Comput 39:287-304
    • (2010) Commun Stat Simul Comput , vol.39 , pp. 287-304
    • Wang, X.1    Wood, A.T.A.2
  • 95
    • 18444396908 scopus 로고    scopus 로고
    • General empirical Bayes wavelet methods and exactly adaptive minimax estimation
    • Zhang C-H (2005) General empirical Bayes wavelet methods and exactly adaptive minimax estimation. Ann Stat 33:54-100
    • (2005) Ann Stat , vol.33 , pp. 54-100
    • Zhang, C.-H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.