메뉴 건너뛰기




Volumn 25, Issue , 2005, Pages 315-338

Bayesian Modeling in the Wavelet Domain

Author keywords

[No Author keywords available]

Indexed keywords


EID: 49649084168     PISSN: 01697161     EISSN: None     Source Type: Book Series    
DOI: 10.1016/S0169-7161(05)25011-3     Document Type: Review
Times cited : (9)

References (68)
  • 6
    • 67649332780 scopus 로고    scopus 로고
    • Perfect simulation for wavelet thresholding with correlated coefficients
    • Technical Report 04:01, Department of Mathematics, University of Bristol
    • Ambler, G.K., Silverman, B.W. (2004b). Perfect simulation for wavelet thresholding with correlated coefficients. Technical Report 04:01, Department of Mathematics, University of Bristol
    • (2004)
    • Ambler, G.K.1    Silverman, B.W.2
  • 7
    • 3042709667 scopus 로고    scopus 로고
    • Empirical Bayes approach to wavelet regression using ε-contaminated priors
    • Angelini C., and Sapatinas T. Empirical Bayes approach to wavelet regression using ε-contaminated priors. J. Statist. Comput. Simulation 74 (2004) 741-764
    • (2004) J. Statist. Comput. Simulation , vol.74 , pp. 741-764
    • Angelini, C.1    Sapatinas, T.2
  • 8
    • 1842487344 scopus 로고    scopus 로고
    • Γ-Minimax wavelet shrinkage: A robust incorporation of information about energy of a signal in denoising applications
    • Angelini C., and Vidakovic B. Γ-Minimax wavelet shrinkage: A robust incorporation of information about energy of a signal in denoising applications. Statistica Sinica 14 (2004) 103-125
    • (2004) Statistica Sinica , vol.14 , pp. 103-125
    • Angelini, C.1    Vidakovic, B.2
  • 9
    • 1542469448 scopus 로고    scopus 로고
    • Bayesian wavelet regression on curves with application to a spectroscopic calibration problem
    • Brown P.J., Fearn T., and Vannucci M. Bayesian wavelet regression on curves with application to a spectroscopic calibration problem. J. Amer. Statist. Assoc. 96 (2001) 398-408
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 398-408
    • Brown, P.J.1    Fearn, T.2    Vannucci, M.3
  • 10
    • 0000506629 scopus 로고
    • Bayesian model choice via Markov chain Monte Carlo
    • Carlin B., and Chib S. Bayesian model choice via Markov chain Monte Carlo. J. Roy. Statist. Soc., Ser. B 57 (1995) 473-484
    • (1995) J. Roy. Statist. Soc., Ser. B , vol.57 , pp. 473-484
    • Carlin, B.1    Chib, S.2
  • 11
    • 0032022704 scopus 로고    scopus 로고
    • Nonlinear wavelet image processing: Variational problems, compression and noise removal through wavelet shrinkage
    • Chambolle A., DeVore R.A., Lee N.-Y., and Lucier B.J. Nonlinear wavelet image processing: Variational problems, compression and noise removal through wavelet shrinkage. IEEE Trans. Image Processing 7 (1998) 319-335
    • (1998) IEEE Trans. Image Processing , vol.7 , pp. 319-335
    • Chambolle, A.1    DeVore, R.A.2    Lee, N.-Y.3    Lucier, B.J.4
  • 12
    • 0037189969 scopus 로고    scopus 로고
    • Wavelet estimation of a baseline signal from repeated noisy measurements by vertical block shrinkage
    • Chang W., and Vidakovic B. Wavelet estimation of a baseline signal from repeated noisy measurements by vertical block shrinkage. Comput. Statist. Data Anal. 40 (2002) 317-328
    • (2002) Comput. Statist. Data Anal. , vol.40 , pp. 317-328
    • Chang, W.1    Vidakovic, B.2
  • 13
    • 0001215143 scopus 로고
    • Evaluation of an unknown distribution density from observations
    • Chencov N.N. Evaluation of an unknown distribution density from observations. Doklady 3 (1962) 1559-1562
    • (1962) Doklady , vol.3 , pp. 1559-1562
    • Chencov, N.N.1
  • 15
    • 0001477056 scopus 로고    scopus 로고
    • Empirical Bayes estimation in wavelet nonparametric regression
    • Bayesian Inference in Wavelet Based Models. Müller P., and Vidakovic B. (Eds), Springer-Verlag, New York
    • Clyde M., and George E. Empirical Bayes estimation in wavelet nonparametric regression. In: Müller P., and Vidakovic B. (Eds). Bayesian Inference in Wavelet Based Models. Lecture Notes in Statistics vol. 141 (1999), Springer-Verlag, New York 309-322
    • (1999) Lecture Notes in Statistics , vol.141 , pp. 309-322
    • Clyde, M.1    George, E.2
  • 16
    • 0034354040 scopus 로고    scopus 로고
    • Flexible empirical Bayes estimation for wavelets
    • Clyde M., and George E. Flexible empirical Bayes estimation for wavelets. J. Roy. Statist. Soc., Ser. B 62 (2000) 681-698
    • (2000) J. Roy. Statist. Soc., Ser. B , vol.62 , pp. 681-698
    • Clyde, M.1    George, E.2
  • 18
    • 0001682758 scopus 로고    scopus 로고
    • Multiple shrinkage and subset selection in wavelets
    • Clyde M., Parmigiani G., and Vidakovic B. Multiple shrinkage and subset selection in wavelets. Biometrika 85 (1998) 391-402
    • (1998) Biometrika , vol.85 , pp. 391-402
    • Clyde, M.1    Parmigiani, G.2    Vidakovic, B.3
  • 19
    • 33747727601 scopus 로고    scopus 로고
    • Wavelet-based statistical signal processing using hidden Markov models
    • Crouse M., Nowak R., and Baraniuk R. Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans. Signal Processing 46 (1998) 886-902
    • (1998) IEEE Trans. Signal Processing , vol.46 , pp. 886-902
    • Crouse, M.1    Nowak, R.2    Baraniuk, R.3
  • 21
    • 3042672591 scopus 로고    scopus 로고
    • Wavelet Bayesian block shrinkage via mixtures of normal-inverse gamma priors
    • De Canditiis D., and Vidakovic B. Wavelet Bayesian block shrinkage via mixtures of normal-inverse gamma priors. J. Comput. Graph. Statist. 13 (2004) 383-398
    • (2004) J. Comput. Graph. Statist. , vol.13 , pp. 383-398
    • De Canditiis, D.1    Vidakovic, B.2
  • 22
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • Donoho D., and Johnstone I. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 (1994) 425-455
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.1    Johnstone, I.2
  • 23
    • 84950459514 scopus 로고
    • Adapting to unknown smoothness via wavelet shrinkage
    • Donoho D., and Johnstone I. Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 (1995) 1200-1224
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 1200-1224
    • Donoho, D.1    Johnstone, I.2
  • 25
    • 7044276339 scopus 로고    scopus 로고
    • A comparative evaluation of wavelet-based methods for hypothesis testing of brain activation maps
    • Fadili M.J., and Bullmore E.T. A comparative evaluation of wavelet-based methods for hypothesis testing of brain activation maps. NeuroImage 23 (2004) 1112-1128
    • (2004) NeuroImage , vol.23 , pp. 1112-1128
    • Fadili, M.J.1    Bullmore, E.T.2
  • 26
    • 0035442514 scopus 로고    scopus 로고
    • Wavelet-based image estimation: An empirical Bayes approach using Jeffreys' noninformative prior
    • Figueiredo M., and Nowak R. Wavelet-based image estimation: An empirical Bayes approach using Jeffreys' noninformative prior. IEEE Trans. Image Processing 10 (2001) 1322-1331
    • (2001) IEEE Trans. Image Processing , vol.10 , pp. 1322-1331
    • Figueiredo, M.1    Nowak, R.2
  • 27
    • 0031526204 scopus 로고    scopus 로고
    • Approaches to Bayesian variable selection
    • George E.I., and McCulloch R. Approaches to Bayesian variable selection. Statistica Sinica 7 (1997) 339-373
    • (1997) Statistica Sinica , vol.7 , pp. 339-373
    • George, E.I.1    McCulloch, R.2
  • 28
    • 0001249413 scopus 로고
    • Formulae for the mean integrated square error of non-linear wavelet based density estimators
    • Hall P., and Patil P. Formulae for the mean integrated square error of non-linear wavelet based density estimators. Ann. Statist. 23 (1995) 905-928
    • (1995) Ann. Statist. , vol.23 , pp. 905-928
    • Hall, P.1    Patil, P.2
  • 29
    • 67649351571 scopus 로고    scopus 로고
    • Empirical Bayesian spatial prediction using wavelets
    • Bayesian Inference in Wavelet Based Models. Müller P., and Vidakovic B. (Eds), Springer-Verlag, New York
    • Huang H.-C., and Cressie N. Empirical Bayesian spatial prediction using wavelets. In: Müller P., and Vidakovic B. (Eds). Bayesian Inference in Wavelet Based Models. Lecture Notes in Statistics vol. 141 (1999), Springer-Verlag, New York 203-222
    • (1999) Lecture Notes in Statistics , vol.141 , pp. 203-222
    • Huang, H.-C.1    Cressie, N.2
  • 30
    • 0034247954 scopus 로고    scopus 로고
    • Deterministic/stochastic wavelet decomposition for recovery of signal from noisy data
    • (Matlab code is available from the Wavelet Denoising software written by Antoniadis, Bigot, and Sapatinas, 2001)
    • Huang H.-C., and Cressie N. Deterministic/stochastic wavelet decomposition for recovery of signal from noisy data. Technometrics 42 (2000) 262-276 (Matlab code is available from the Wavelet Denoising software written by Antoniadis, Bigot, and Sapatinas, 2001)
    • (2000) Technometrics , vol.42 , pp. 262-276
    • Huang, H.-C.1    Cressie, N.2
  • 31
    • 0034551941 scopus 로고    scopus 로고
    • Bayesian wavelet shrinkage for nonparametric mixed-effects models
    • Huang S.Y., and Lu H.S. Bayesian wavelet shrinkage for nonparametric mixed-effects models. Statistica Sinica 10 (2000) 1021-1040
    • (2000) Statistica Sinica , vol.10 , pp. 1021-1040
    • Huang, S.Y.1    Lu, H.S.2
  • 32
    • 0034406376 scopus 로고    scopus 로고
    • Wavelet estimation using Bayesian basis selection and basis averaging
    • Kohn R., Marron J.S., and Yau P. Wavelet estimation using Bayesian basis selection and basis averaging. Statistica Sinica 10 (2000) 109-128
    • (2000) Statistica Sinica , vol.10 , pp. 109-128
    • Kohn, R.1    Marron, J.S.2    Yau, P.3
  • 33
    • 1542427727 scopus 로고    scopus 로고
    • Bayesian multi-scale models for Poisson processes
    • Kolaczyk E.D. Bayesian multi-scale models for Poisson processes. J. Amer. Statist. Assoc. 94 (1999) 920-933
    • (1999) J. Amer. Statist. Assoc. , vol.94 , pp. 920-933
    • Kolaczyk, E.D.1
  • 34
    • 0342763788 scopus 로고    scopus 로고
    • Wavelet thresholding for a wide class of noise distributions
    • Rhodes, Greece, pp
    • Leporini, D., Pesquet, J.-C. (1998). Wavelet thresholding for a wide class of noise distributions. In: EUSIPCO'98, Rhodes, Greece, pp. 993-996
    • (1998) EUSIPCO'98 , pp. 993-996
    • Leporini, D.1    Pesquet, J.-C.2
  • 35
    • 0034831995 scopus 로고    scopus 로고
    • Bayesian wavelet denoising: Besov priors and non-Gaussian noises
    • Leporini D., and Pesquet J.-C. Bayesian wavelet denoising: Besov priors and non-Gaussian noises. Signal Process. 81 (1999) 55-67
    • (1999) Signal Process. , vol.81 , pp. 55-67
    • Leporini, D.1    Pesquet, J.-C.2
  • 36
    • 0141554016 scopus 로고    scopus 로고
    • Best basis representations with prior statistical models
    • Bayesian Inference in Wavelet Based Models. Müller P., and Vidakovic B. (Eds), Springer-Verlag, New York
    • Leporini D., Pesquet J.-C., and Krim H. Best basis representations with prior statistical models. In: Müller P., and Vidakovic B. (Eds). Bayesian Inference in Wavelet Based Models. Lecture Notes in Statistics vol. 141 (1999), Springer-Verlag, New York 109-113
    • (1999) Lecture Notes in Statistics , vol.141 , pp. 109-113
    • Leporini, D.1    Pesquet, J.-C.2    Krim, H.3
  • 37
    • 0345135343 scopus 로고    scopus 로고
    • Lina, J-M., MacGibbon, B., (1997). Non-linear shrinkage estimation with complex Daubechies wavelets. In: Proceedings of SPIE, 3169. Wavelet Applications in Signal and Image Processing V, pp. 67-79
    • Lina, J-M., MacGibbon, B., (1997). Non-linear shrinkage estimation with complex Daubechies wavelets. In: Proceedings of SPIE, vol. 3169. Wavelet Applications in Signal and Image Processing V, pp. 67-79
  • 38
    • 0141872472 scopus 로고    scopus 로고
    • Generalized cross-validation for wavelet shrinkage in nonparametric mixed-effects models
    • Lu H.S., Huang S.Y., and Lin F.J. Generalized cross-validation for wavelet shrinkage in nonparametric mixed-effects models. J. Comput. Graph. Statist. 12 (2003) 714-730
    • (2003) J. Comput. Graph. Statist. , vol.12 , pp. 714-730
    • Lu, H.S.1    Huang, S.Y.2    Lin, F.J.3
  • 39
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • Mallat S. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Machine Intell. 11 (1989) 674-693
    • (1989) IEEE Trans. Pattern Anal. Machine Intell. , vol.11 , pp. 674-693
    • Mallat, S.1
  • 40
    • 0242679450 scopus 로고    scopus 로고
    • Wavelet-based nonparametric modeling of hierarchical functions in colon carcinogenesis (with discussion)
    • Morris J.S., Vannucci M., Brown P.J., and Carroll R.J. Wavelet-based nonparametric modeling of hierarchical functions in colon carcinogenesis (with discussion). J. Amer. Statist. Assoc. 98 (2003) 573-597
    • (2003) J. Amer. Statist. Assoc. , vol.98 , pp. 573-597
    • Morris, J.S.1    Vannucci, M.2    Brown, P.J.3    Carroll, R.J.4
  • 41
    • 0032271927 scopus 로고    scopus 로고
    • Bayesian inference with wavelets: Density estimation
    • Müller P., and Vidakovic B. Bayesian inference with wavelets: Density estimation. J. Comput. Graph. Statist. 7 (1999) 456-468
    • (1999) J. Comput. Graph. Statist. , vol.7 , pp. 456-468
    • Müller, P.1    Vidakovic, B.2
  • 42
    • 4043166681 scopus 로고    scopus 로고
    • MCMC methods in wavelet shrinkage: Non-equally spaced regression, density and spectral density estimation
    • Bayesian Inference in Wavelet Based Models. Müller P., and Vidakovic B. (Eds), Springer-Verlag, New York
    • Müller P., and Vidakovic B. MCMC methods in wavelet shrinkage: Non-equally spaced regression, density and spectral density estimation. In: Müller P., and Vidakovic B. (Eds). Bayesian Inference in Wavelet Based Models. Lecture Notes in Statistics vol. 141 (1999), Springer-Verlag, New York 187-202
    • (1999) Lecture Notes in Statistics , vol.141 , pp. 187-202
    • Müller, P.1    Vidakovic, B.2
  • 43
    • 0004329796 scopus 로고    scopus 로고
    • Müller P., and Vidakovic B. (Eds), Springer-Verlag, New York
    • In: Müller P., and Vidakovic B. (Eds). Bayesian Inference in Wavelet Based Models. Lecture Notes in Statistics vol. 141 (1999), Springer-Verlag, New York
    • (1999) Lecture Notes in Statistics , vol.141
  • 46
    • 0040656311 scopus 로고    scopus 로고
    • Bayesian analysis of change-point models
    • Bayesian Inference in Wavelet Based Models. Müller P., and Vidakovic B. (Eds), Springer-Verlag, New York
    • Ogden R.T., and Lynch J.D. Bayesian analysis of change-point models. In: Müller P., and Vidakovic B. (Eds). Bayesian Inference in Wavelet Based Models. Lecture Notes in Statistics vol. 141 (1999), Springer-Verlag, New York 67-82
    • (1999) Lecture Notes in Statistics , vol.141 , pp. 67-82
    • Ogden, R.T.1    Lynch, J.D.2
  • 47
    • 67649345318 scopus 로고    scopus 로고
    • Frequentist optimality of Bayes factor thresholding estimators in wavelet regression models
    • Pensky, M., Sapatinas, T. (2004). Frequentist optimality of Bayes factor thresholding estimators in wavelet regression models. Technical Report at University of Cyprus
    • (2004) Technical Report at University of Cyprus
    • Pensky, M.1    Sapatinas, T.2
  • 50
    • 0000795635 scopus 로고
    • Density estimation with confidence sets exemplified by superclusters and voids in the galaxies
    • Roeder K. Density estimation with confidence sets exemplified by superclusters and voids in the galaxies. J. Amer. Statist. Assoc. 85 (1990) 617-624
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 617-624
    • Roeder, K.1
  • 51
    • 67649318909 scopus 로고    scopus 로고
    • Robust Bayesian and Bayesian decision theoretic wavelet shrinkage
    • Bayesian Inference in Wavelet Based Models. Müller P., and Vidakovic B. (Eds), Springer-Verlag, New York
    • Ruggeri F. Robust Bayesian and Bayesian decision theoretic wavelet shrinkage. In: Müller P., and Vidakovic B. (Eds). Bayesian Inference in Wavelet Based Models. Lecture Notes in Statistics vol. 141 (1999), Springer-Verlag, New York 139-154
    • (1999) Lecture Notes in Statistics , vol.141 , pp. 139-154
    • Ruggeri, F.1
  • 52
    • 0033430776 scopus 로고    scopus 로고
    • A Bayesian decision theoretic approach to the choice of thresholding parameter
    • Ruggeri F., and Vidakovic B. A Bayesian decision theoretic approach to the choice of thresholding parameter. Statistica Sinica 9 (1999) 183-197
    • (1999) Statistica Sinica , vol.9 , pp. 183-197
    • Ruggeri, F.1    Vidakovic, B.2
  • 53
    • 0000446730 scopus 로고    scopus 로고
    • Bayesian denoising of visual images in the wavelet domain
    • Bayesian Inference in Wavelet Based Models. Müller P., and Vidakovic B. (Eds), Springer-Verlag, New York
    • Simoncelli E. Bayesian denoising of visual images in the wavelet domain. In: Müller P., and Vidakovic B. (Eds). Bayesian Inference in Wavelet Based Models. Lecture Notes in Statistics vol. 141 (1999), Springer-Verlag, New York 291-308
    • (1999) Lecture Notes in Statistics , vol.141 , pp. 291-308
    • Simoncelli, E.1
  • 55
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • Tierney L. Markov chains for exploring posterior distributions. Ann. Statist. 22 (1994) 1701-1728
    • (1994) Ann. Statist. , vol.22 , pp. 1701-1728
    • Tierney, L.1
  • 56
    • 0033478457 scopus 로고    scopus 로고
    • Covariance structure of wavelet coefficients: Theory and models in a Bayesian perspective
    • Vannucci M., and Corradi F. Covariance structure of wavelet coefficients: Theory and models in a Bayesian perspective. J. Roy. Statist. Soc., Ser. B 61 (1999) 971-986
    • (1999) J. Roy. Statist. Soc., Ser. B , vol.61 , pp. 971-986
    • Vannucci, M.1    Corradi, F.2
  • 58
    • 0037336626 scopus 로고    scopus 로고
    • A decision theoretical approach to wavelet regression on curves with a high number of regressors
    • Vannucci M., Brown P.J., and Fearn T. A decision theoretical approach to wavelet regression on curves with a high number of regressors. J. Statist. Plann. Inference 112 (2003) 195-212
    • (2003) J. Statist. Plann. Inference , vol.112 , pp. 195-212
    • Vannucci, M.1    Brown, P.J.2    Fearn, T.3
  • 59
    • 0032349461 scopus 로고    scopus 로고
    • Nonlinear wavelet shrinkage with Bayes rules and Bayes factors
    • Vidakovic B. Nonlinear wavelet shrinkage with Bayes rules and Bayes factors. J. Amer. Statist. Assoc. 93 (1998) 173-179
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 173-179
    • Vidakovic, B.1
  • 60
    • 0001256396 scopus 로고    scopus 로고
    • Wavelet-based nonparametric Bayes methods
    • Practical Nonparametric and Semiparametric Bayesian Statistics. Dey D., Müller P., and Sinha D. (Eds), Springer-Verlag, New York
    • Vidakovic B. Wavelet-based nonparametric Bayes methods. In: Dey D., Müller P., and Sinha D. (Eds). Practical Nonparametric and Semiparametric Bayesian Statistics. Lecture Notes in Statistics vol. 133 (1998), Springer-Verlag, New York 133-155
    • (1998) Lecture Notes in Statistics , vol.133 , pp. 133-155
    • Vidakovic, B.1
  • 63
    • 4043166681 scopus 로고    scopus 로고
    • An introduction to wavelets
    • Bayesian Inference in Wavelet Based Models. Müller P., and Vidakovic B. (Eds), Springer-Verlag, New York
    • Vidakovic B., and Müller P. An introduction to wavelets. In: Müller P., and Vidakovic B. (Eds). Bayesian Inference in Wavelet Based Models. Lecture Notes in Statistics vol. 141 (1999), Springer-Verlag, New York 1-18
    • (1999) Lecture Notes in Statistics , vol.141 , pp. 1-18
    • Vidakovic, B.1    Müller, P.2
  • 65
    • 0141819645 scopus 로고    scopus 로고
    • BAMS method: Theory and simulations
    • (Matlab code is available from the Wavelet Denoising software written by Antoniadis, Bigot, and Sapatinas, 2001)
    • Vidakovic B., and Ruggeri F. BAMS method: Theory and simulations. Sankhyā, Ser. B 63 (2001) 234-249 (Matlab code is available from the Wavelet Denoising software written by Antoniadis, Bigot, and Sapatinas, 2001)
    • (2001) Sankhyā, Ser. B , vol.63 , pp. 234-249
    • Vidakovic, B.1    Ruggeri, F.2
  • 67
    • 0032717391 scopus 로고    scopus 로고
    • Observed wavenumber spectra from 1 to 10,000 km of near-surface winds during the TOGA COARE IOP
    • Wikle C.K., Milliff R.F., and Large W.G. Observed wavenumber spectra from 1 to 10,000 km of near-surface winds during the TOGA COARE IOP. J. Atmospheric Sci. 56 (1999) 2222-2231
    • (1999) J. Atmospheric Sci. , vol.56 , pp. 2222-2231
    • Wikle, C.K.1    Milliff, R.F.2    Large, W.G.3
  • 68
    • 1542469523 scopus 로고    scopus 로고
    • Spatiotemporal hierarchical Bayesian modeling: Tropical ocean surface winds
    • Wikle C.K., Milliff R.F., Nychka D., and Berliner L.M. Spatiotemporal hierarchical Bayesian modeling: Tropical ocean surface winds. J. Amer. Statist. Assoc. 96 (2001) 382-397
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 382-397
    • Wikle, C.K.1    Milliff, R.F.2    Nychka, D.3    Berliner, L.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.