메뉴 건너뛰기




Volumn 89, Issue , 2014, Pages 1023-1030

Urban water demand forecasting for the island of skiathos

Author keywords

ARIMA; Artificial neural networks; Forecasting; Time series; Urban water demand; Water distribution networks

Indexed keywords

FORECASTING; NEURAL NETWORKS; SYSTEMS ANALYSIS; TIME SERIES;

EID: 84949117680     PISSN: None     EISSN: 18777058     Source Type: Conference Proceeding    
DOI: 10.1016/j.proeng.2014.11.220     Document Type: Conference Paper
Times cited : (45)

References (23)
  • 1
    • 79955029895 scopus 로고    scopus 로고
    • Analysis and evaluation of the operational status of municipal wastewater treatment plants in the dodecanese prefecture in Greece
    • C.S. Laspidou, S.E. Gialis, A. Loukas, and A. Kungolos, Analysis and evaluation of the operational status of municipal wastewater treatment plants in the Dodecanese prefecture in Greece, Water Policy 13 (2011) 287-297.
    • (2011) Water Policy , vol.13 , pp. 287-297
    • Laspidou, C.S.1    Gialis, S.E.2    Loukas, A.3    Kungolos, A.4
  • 2
    • 33847082820 scopus 로고    scopus 로고
    • A short-term pattern-based model for water demand forecasting
    • S. Alvisi, M. Franchini, and A. Marineli, A short-term pattern-based model for water demand forecasting. J. of Hydroinformatics 9(1) (2007) 39-50
    • (2007) J. of Hydroinformatics , vol.9 , Issue.1 , pp. 39-50
    • Alvisi, S.1    Franchini, M.2    Marineli, A.3
  • 4
    • 84949125538 scopus 로고    scopus 로고
    • Urban water demand forecasting using the stochastic nature of short term historical water demand and supply pattern
    • T.G. Mamo, I. Juran, and I. Shahrour, Urban Water Demand Forecasting Using the Stochastic Nature of Short Term Historical Water Demand and supply Pattern, J. of Water Resource and Hydraulic Engineering 2(3) (2013) 92-10.
    • (2013) J. of Water Resource and Hydraulic Engineering , vol.2 , Issue.3 , pp. 92-10
    • Mamo, T.G.1    Juran, I.2    Shahrour, I.3
  • 6
    • 33746329318 scopus 로고    scopus 로고
    • Areview on integration of artificial intelligence into water quality modeling
    • K.W. Chau, Areview on integration of artificial intelligence into water quality modeling, Marine Pollution Bulletin 52 (2006) 726-733.
    • (2006) Marine Pollution Bulletin , vol.52 , pp. 726-733
    • Chau, K.W.1
  • 10
    • 0031250747 scopus 로고    scopus 로고
    • Combination of time series and neural network for reliability forecasting modeling
    • C.T. Su, L.I. Tong, CM. Leou, Combination of time series and neural network for reliability forecasting modeling, J. of Chinese Industrial Engineering 14 (1997) 419-429.
    • (1997) J. of Chinese Industrial Engineering , vol.14 , pp. 419-429
    • Su, C.T.1    Tong, L.I.2    Leou, C.M.3
  • 11
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • P.G. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing 50 (2003) 159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, P.G.1
  • 12
    • 77950516820 scopus 로고    scopus 로고
    • A hybrid neural network and ARFMA model for water quality time series prediction
    • D. O. Faruk, A hybrid neural network and ARFMA model for water quality time series prediction, Engineering Applications of Artificial Intelligence 23 (2010) 586-594.
    • (2010) Engineering Applications of Artificial Intelligence , vol.23 , pp. 586-594
    • Faruk, D.O.1
  • 13
    • 34547253978 scopus 로고    scopus 로고
    • Energy management strategies use short-term water consumption forecasting to minimize cost of pumping operations
    • L. Jentgen, H. Kidder, R. Hill and S. Conrad, Energy management strategies use short-term water consumption forecasting to minimize cost of pumping operations, J. American Water Works Association 99(6) (2007) 86-94.
    • (2007) J. American Water Works Association , vol.99 , Issue.6 , pp. 86-94
    • Jentgen, L.1    Kidder, H.2    Hill, R.3    Conrad, S.4
  • 14
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • G Zhang, E.B. Patuwo, M.Y. Hu, Forecasting with artificial neural networks: the state of the art, Int J. Forecasting 14 (1998) 35-42.
    • (1998) Int J. Forecasting , vol.14 , pp. 35-42
    • Zhang, G.1    Patuwo, E.B.2    Hu, M.Y.3
  • 15
    • 84984426748 scopus 로고
    • General exponential smoothing and the equivalent ARMA process
    • E.D. McKenzie, General exponential smoothing and the equivalent ARMA process, J. Forecasting 3 (1984) 333-344.
    • (1984) J. Forecasting , vol.3 , pp. 333-344
    • McKenzie, E.D.1
  • 20
    • 0000082693 scopus 로고
    • Forecasting sales by exponentially weighted moving averages
    • P. R. Winters., Forecasting sales by exponentially weighted moving averages, Management Science 6 (1960) 324-342.
    • (1960) Management Science , vol.6 , pp. 324-342
    • Winters, P.R.1
  • 21
    • 0038494930 scopus 로고    scopus 로고
    • Artificial neural networks in time series forecasting: A comparative analysis
    • H Allende, C. Moraga, R. Salas, Artificial neural networks in time series forecasting: a comparative analysis, Kybernetik 38 (2002) 685-707.
    • (2002) Kybernetik , vol.38 , pp. 685-707
    • Allende, H.1    Moraga, C.2    Salas, R.3
  • 23
    • 0032829433 scopus 로고    scopus 로고
    • Hydrological forecasting with artificial neural networks: The state of the art
    • P. Couhbaly, F. Anctil, B. Bobee, Hydrological forecasting with artificial neural networks: the state of the art, Canadian Journal of Civil Engineering 26 (1999) 293-304.
    • (1999) Canadian Journal of Civil Engineering , vol.26 , pp. 293-304
    • Couhbaly, P.1    Anctil, F.2    Bobee, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.