메뉴 건너뛰기




Volumn 38, Issue 6, 2002, Pages 685-707

Artificial neural networks in time series forecasting: A comparative analysis

Author keywords

[No Author keywords available]

Indexed keywords

DIFFERENCE EQUATIONS; FEEDFORWARD NEURAL NETWORKS; FORECASTING; MATHEMATICAL MODELS; PARAMETER ESTIMATION; RANDOM PROCESSES; REGRESSION ANALYSIS; TIME SERIES ANALYSIS;

EID: 0038494930     PISSN: 00235954     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (69)

References (47)
  • 2
    • 84981389817 scopus 로고
    • Recursive generalized M-estimates for autoregressive moving average models
    • H. Allende and S. Heiler: Recursive generalized M-estimates for autoregressive moving average models. J. Time Ser. Anal. 13 (1992), 1-18.
    • (1992) J. Time Ser. Anal. , vol.13 , pp. 1-18
    • Allende, H.1    Heiler, S.2
  • 4
    • 0000254593 scopus 로고
    • Use of an artificial neural network for data analysis in clinical decision marking: The diagnosis of acute coronary occlusion
    • W. G. Baxt: Use of an artificial neural network for data analysis in clinical decision marking: The diagnosis of acute coronary occlusion. Neural Computational 2 (1990), 480-489.
    • (1990) Neural Computational , vol.2 , pp. 480-489
    • Baxt, W.G.1
  • 12
    • 0347137529 scopus 로고    scopus 로고
    • Forecasting in the 1990s
    • C. Chatfield: Forecasting in the 1990s. Statistician 4 (1997), 46, 461-473.
    • (1997) Statistician , vol.4 , Issue.46 , pp. 461-473
    • Chatfield, C.1
  • 13
    • 84972539015 scopus 로고
    • Neural networks: Review from a statistical perspective
    • B. Cheng and D. M. Titterington: Neural networks: review from a statistical perspective. Statist. Sci. 1 (1994), 2-54.
    • (1994) Statist. Sci. , vol.1 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 14
    • 0028401357 scopus 로고
    • Recurrent neural networks and robust time series prediction
    • J. T. Connor and R. D. Martin: Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Networks 2 (1994), 5, 240-253.
    • (1994) IEEE Trans. Neural Networks , vol.2 , Issue.5 , pp. 240-253
    • Connor, J.T.1    Martin, R.D.2
  • 15
    • 0000890412 scopus 로고    scopus 로고
    • Model selection and forecasting for long-range dependent processes
    • N. Crato and B.K. Ray: Model selection and forecasting for long-range dependent processes. Internat. J. Forecasting 15 (1996), 107-125.
    • (1996) Internat. J. Forecasting , vol.15 , pp. 107-125
    • Crato, N.1    Ray, B.K.2
  • 18
    • 0002432565 scopus 로고
    • Multivariate adaptive regression spline
    • J. H. Friedman: Multivariate adaptive regression spline. Ann. Statist. 19 (1991), 1-141.
    • (1991) Ann. Statist. , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 19
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • K. I. Funahashi: On the approximate realization of continuous mappings by neural networks. Neural Networks 2 (1989), 183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.I.1
  • 21
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White: Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989), 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 22
    • 0003611517 scopus 로고    scopus 로고
    • Preprint of a book obtained via Internet from the author
    • R. M. Hristev: Artificial Neural Networks. Preprint of a book obtained via Internet from the author, 1998.
    • (1998) Artificial Neural Networks
    • Hristev, R.M.1
  • 24
    • 0040428297 scopus 로고    scopus 로고
    • Prediction for artificial neural networks
    • J. T. G. Hwang and A. A. Ding: Prediction for artificial neural networks. J. Amer. Statist. Assoc. 92 (1997), 438, 748-757.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , Issue.438 , pp. 748-757
    • Hwang, J.T.G.1    Ding, A.A.2
  • 25
    • 84979347161 scopus 로고
    • Forecasting from non-linear models in practice
    • J. L. Lin and C. W. Granger: Forecasting from non-linear models in practice. Internat. J. Forecasting 13 (1994), 1-9.
    • (1994) Internat. J. Forecasting , vol.13 , pp. 1-9
    • Lin, J.L.1    Granger, C.W.2
  • 26
    • 0023331258 scopus 로고    scopus 로고
    • An introduction to computing with neural nets
    • R. P. Lippmann: An introduction to computing with neural nets. IEEE ASSP Magazine (1997), 4-22.
    • (1997) IEEE ASSP Magazine , pp. 4-22
    • Lippmann, R.P.1
  • 27
    • 0017846358 scopus 로고
    • On a measure of lack of fit in time series models
    • G. M. Ljung and G. E. P. Bax: On a measure of lack of fit in time series models. Biometrika 65 (1978), 297-303.
    • (1978) Biometrika , vol.65 , pp. 297-303
    • Ljung, G.M.1    Bax, G.E.P.2
  • 30
    • 0002787457 scopus 로고
    • Architecture selection strategies for neural networks
    • Refenes A. P. N., Wiley, New York
    • J. E. Moody and J. Utans: Architecture selection strategies for neural networks. In: Refenes A. P. N. Neural Networks in the Capital Markets, Wiley, New York 1995.
    • (1995) Neural Networks in the Capital Markets
    • Moody, J.E.1    Utans, J.2
  • 31
    • 84992328443 scopus 로고    scopus 로고
    • Properties of parametric feedforward neural networks
    • Valparaiso
    • C. Moraga: Properties of parametric feedforward neural networks. In: XXIII Conferencia Latinoamericana de Informática, Valparaiso 1997, Vol. 2, pp. 861-870.
    • (1997) XXIII Conferencia Latinoamericana de Informática , vol.2 , pp. 861-870
    • Moraga, C.1
  • 32
    • 0023534496 scopus 로고
    • Generalization of Backpropagation to recurrent and higher order networks
    • F. J. Pineda: Generalization of Backpropagation to recurrent and higher order networks. In: Proc. IEEE Conf. Neural Inform. Proc. Syst., 1987.
    • (1987) Proc. IEEE Conf. Neural Inform. Proc. Syst.
    • Pineda, F.J.1
  • 33
    • 0026121558 scopus 로고
    • A neural network expert system for diagnosing and treating hypertension
    • R. Poli, S. Cagnoni, G. Coppini, and G. Walli: A neural network expert system for diagnosing and treating hypertension. Computer (1991), 64-71.
    • (1991) Computer , pp. 64-71
    • Poli, R.1    Cagnoni, S.2    Coppini, G.3    Walli, G.4
  • 34
    • 0033365782 scopus 로고    scopus 로고
    • Neural model identification, variable selection and model adequacy
    • A. P. N. Referes and A. D. Zapranis: Neural model identification, variable selection and model adequacy. J. Forecasting 18 (1999), 299-322.
    • (1999) J. Forecasting , vol.18 , pp. 299-322
    • Referes, A.P.N.1    Zapranis, A.D.2
  • 36
    • 0002983776 scopus 로고
    • Statistical aspects of neural networks
    • O. E. Barndorf-Nielsen, J. L. Jensen, and W. S. Kendall, eds., Chapman and Hall, London
    • B.D. Ripley: Statistical aspects of neural networks. In: Networks and Chaos-Statistical and Probabilistic Aspect (O. E. Barndorf-Nielsen, J. L. Jensen, and W. S. Kendall, eds.), Chapman and Hall, London 1993.
    • (1993) Networks and Chaos-Statistical and Probabilistic Aspect
    • Ripley, B.D.1
  • 38
    • 0002412604 scopus 로고
    • Forecasting cost incurred from unit differencing fractionally integrated processes
    • J. Smith and S. Yadav: Forecasting cost incurred from unit differencing fractionally integrated processes. Internat. J. Forecasting 10 (1994), 507-514.
    • (1994) Internat. J. Forecasting , vol.10 , pp. 507-514
    • Smith, J.1    Yadav, S.2
  • 39
    • 0003140365 scopus 로고    scopus 로고
    • Neural networks in applied statistics
    • H. S. Stern: Neural networks in applied statistics. Technometrics 38 (1996), 3, 205-214.
    • (1996) Technometrics , vol.38 , Issue.3 , pp. 205-214
    • Stern, H.S.1
  • 40
    • 0000366506 scopus 로고
    • On the theory of bilinear models
    • T. Subba Rao: On the theory of bilinear models. J. Roy. Statist. Soc. Ser. B 43 (1981), 244-255.
    • (1981) J. Roy. Statist. Soc. Ser. B , vol.43 , pp. 244-255
    • Subba Rao, T.1
  • 41
    • 0026897370 scopus 로고
    • Uniqueness of the weights for minimal feedforward nets with a given input-output map
    • H. J. Sussmann: Uniqueness of the weights for minimal feedforward nets with a given input-output map. Neural Networks 5 (1992), 589-593.
    • (1992) Neural Networks , vol.5 , pp. 589-593
    • Sussmann, H.J.1
  • 45
    • 0000864140 scopus 로고
    • The necessary and sufficient conditions for consistency of the method of empirical risk minimization
    • V. Vapnrk and A. Chervoneski: The necessary and sufficient conditions for consistency of the method of empirical risk minimization. Pattern Recognition Image Anal. 1 (1991), 284-305.
    • (1991) Pattern Recognition Image Anal. , vol.1 , pp. 284-305
    • Vapnrk, V.1    Chervoneski, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.